Add binary counting structure s computation

- Add binary counting structure s computation & more
- Add errors handling
- Add test of the homomorphic property of the vector commitment
This commit is contained in:
2022-07-10 15:46:44 +02:00
parent 6f5c10549e
commit 4f9b0a4baf

View File

@@ -1,8 +1,8 @@
extern crate ark_ed_on_bn254; extern crate ark_ed_on_bn254;
use ark_ec::ProjectiveCurve; use ark_ec::ProjectiveCurve;
use ark_ed_on_bn254::{EdwardsProjective, Fr}; use ark_ed_on_bn254::{EdwardsProjective, Fr};
use ark_ff::{fields::PrimeField, Field}; // BigInteger use ark_ff::{fields::PrimeField, Field};
use ark_std::{UniformRand, Zero}; use ark_std::{One, UniformRand, Zero};
#[allow(non_snake_case)] #[allow(non_snake_case)]
pub struct IPA { pub struct IPA {
@@ -15,8 +15,6 @@ pub struct IPA {
#[allow(non_snake_case)] #[allow(non_snake_case)]
pub struct Proof { pub struct Proof {
a: Fr, a: Fr,
b: Fr, // TODO not needed
G: EdwardsProjective, // TODO not needed
l: Vec<Fr>, l: Vec<Fr>,
r: Vec<Fr>, r: Vec<Fr>,
L: Vec<EdwardsProjective>, L: Vec<EdwardsProjective>,
@@ -42,11 +40,17 @@ impl IPA {
} }
} }
pub fn commit(&self, a: &[Fr], r: Fr) -> EdwardsProjective { pub fn commit(&self, a: &[Fr], r: Fr) -> Result<EdwardsProjective, String> {
inner_product_point(a, &self.Gs) + self.H.mul(r.into_repr()) Ok(inner_product_point(a, &self.Gs)? + self.H.mul(r.into_repr()))
} }
pub fn ipa(&mut self, a: &[Fr], b: &[Fr], u: &[Fr], U: &EdwardsProjective) -> Proof { pub fn ipa(
&mut self,
a: &[Fr],
b: &[Fr],
u: &[Fr],
U: &EdwardsProjective,
) -> Result<Proof, String> {
let mut a = a.to_owned(); let mut a = a.to_owned();
let mut b = b.to_owned(); let mut b = b.to_owned();
let mut G = self.Gs.clone(); let mut G = self.Gs.clone();
@@ -69,12 +73,12 @@ impl IPA {
l[j] = Fr::rand(&mut self.rng); l[j] = Fr::rand(&mut self.rng);
r[j] = Fr::rand(&mut self.rng); r[j] = Fr::rand(&mut self.rng);
L[j] = inner_product_point(&a_lo, &G_hi) L[j] = inner_product_point(&a_lo, &G_hi)?
+ self.H.mul(l[j].into_repr()) + self.H.mul(l[j].into_repr())
+ U.mul(inner_product_field(&a_lo, &b_hi).into_repr()); + U.mul(inner_product_field(&a_lo, &b_hi)?.into_repr());
R[j] = inner_product_point(&a_hi, &G_lo) R[j] = inner_product_point(&a_hi, &G_lo)?
+ self.H.mul(r[j].into_repr()) + self.H.mul(r[j].into_repr())
+ U.mul(inner_product_field(&a_hi, &b_lo).into_repr()); + U.mul(inner_product_field(&a_hi, &b_lo)?.into_repr());
let uj = u[j]; let uj = u[j];
let uj_inv = u[j].inverse().unwrap(); let uj_inv = u[j].inverse().unwrap();
@@ -82,41 +86,52 @@ impl IPA {
a = vec_add( a = vec_add(
&vec_scalar_mul_field(&a_lo, &uj), &vec_scalar_mul_field(&a_lo, &uj),
&vec_scalar_mul_field(&a_hi, &uj_inv), &vec_scalar_mul_field(&a_hi, &uj_inv),
); )?;
b = vec_add( b = vec_add(
&vec_scalar_mul_field(&b_lo, &uj_inv), &vec_scalar_mul_field(&b_lo, &uj_inv),
&vec_scalar_mul_field(&b_hi, &uj), &vec_scalar_mul_field(&b_hi, &uj),
); )?;
G = vec_add_point( G = vec_add_point(
&vec_scalar_mul_point(&G_lo, &uj_inv), &vec_scalar_mul_point(&G_lo, &uj_inv),
&vec_scalar_mul_point(&G_hi, &uj), &vec_scalar_mul_point(&G_hi, &uj),
); )?;
} }
// TODO assert len a,b,G == 1 if a.len() != 1 {
return Err(format!("a.len() should be 1, a.len()={}", a.len()));
}
if b.len() != 1 {
return Err(format!("b.len() should be 1, b.len()={}", b.len()));
}
if G.len() != 1 {
return Err(format!("G.len() should be 1, G.len()={}", G.len()));
}
Proof { Ok(Proof {
a: a[0], a: a[0],
b: b[0],
G: G[0],
l, l,
r, r,
L, L,
R, R,
} })
} }
pub fn verify( pub fn verify(
&self, &self,
x: &Fr,
P: &EdwardsProjective, P: &EdwardsProjective,
p: &Proof, p: &Proof,
r: &Fr, r: &Fr,
u: &[Fr], u: &[Fr],
U: &EdwardsProjective, U: &EdwardsProjective,
) -> bool { ) -> Result<bool, String> {
let mut q_0 = *P; let mut q_0 = *P;
let mut r = *r; let mut r = *r;
// TODO compute b & G without getting them in the proof package // compute b & G from s
let s = build_s(u, self.d as usize);
let bs = powers_of(*x, self.d);
let b = inner_product_field(&s, &bs)?;
let G = inner_product_point(&s, &self.Gs)?;
#[allow(clippy::needless_range_loop)] #[allow(clippy::needless_range_loop)]
for j in 0..u.len() { for j in 0..u.len() {
@@ -127,46 +142,103 @@ impl IPA {
r = r + p.l[j] * uj2 + p.r[j] * uj_inv2; r = r + p.l[j] * uj2 + p.r[j] * uj_inv2;
} }
let q_1 = let q_1 = G.mul(p.a.into_repr()) + self.H.mul(r.into_repr()) + U.mul((p.a * b).into_repr());
p.G.mul(p.a.into_repr()) + self.H.mul(r.into_repr()) + U.mul((p.a * p.b).into_repr());
q_0 == q_1 Ok(q_0 == q_1)
} }
} }
fn inner_product_field(a: &[Fr], b: &[Fr]) -> Fr { // s = (
// TODO require lens equal // u₁⁻¹ u₂⁻¹ … uₖ⁻¹,
// u₁ u₂⁻¹ … uₖ⁻¹,
// u₁⁻¹ u₂ … uₖ⁻¹,
// u₁ u₂ … uₖ⁻¹,
// ⋮ ⋮ ⋮
// u₁ u₂ … uₖ
// )
fn build_s(u: &[Fr], d: usize) -> Vec<Fr> {
let k = (f64::from(d as u32).log2()) as usize;
let mut s: Vec<Fr> = vec![Fr::one(); d];
let mut t = d;
for j in (0..k).rev() {
t /= 2;
let mut c = 0;
#[allow(clippy::needless_range_loop)]
for i in 0..d {
if c < t {
s[i] *= u[j].inverse().unwrap();
} else {
s[i] *= u[j];
}
c += 1;
if c >= t * 2 {
c = 0;
}
}
}
s
}
fn inner_product_field(a: &[Fr], b: &[Fr]) -> Result<Fr, String> {
if a.len() != b.len() {
return Err(format!(
"a.len()={} must be equal to b.len()={}",
a.len(),
b.len()
));
}
let mut c: Fr = Fr::zero(); let mut c: Fr = Fr::zero();
for i in 0..a.len() { for i in 0..a.len() {
c += a[i] * b[i]; c += a[i] * b[i];
} }
c Ok(c)
} }
fn inner_product_point(a: &[Fr], b: &[EdwardsProjective]) -> EdwardsProjective { fn inner_product_point(a: &[Fr], b: &[EdwardsProjective]) -> Result<EdwardsProjective, String> {
// TODO require lens equal if a.len() != b.len() {
return Err(format!(
"a.len()={} must be equal to b.len()={}",
a.len(),
b.len()
));
}
let mut c: EdwardsProjective = EdwardsProjective::zero(); let mut c: EdwardsProjective = EdwardsProjective::zero();
for i in 0..a.len() { for i in 0..a.len() {
c += b[i].mul(a[i].into_repr()); c += b[i].mul(a[i].into_repr());
} }
c Ok(c)
} }
fn vec_add(a: &[Fr], b: &[Fr]) -> Vec<Fr> { fn vec_add(a: &[Fr], b: &[Fr]) -> Result<Vec<Fr>, String> {
// TODO require len equal if a.len() != b.len() {
return Err(format!(
"a.len()={} must be equal to b.len()={}",
a.len(),
b.len()
));
}
let mut c: Vec<Fr> = vec![Fr::zero(); a.len()]; let mut c: Vec<Fr> = vec![Fr::zero(); a.len()];
for i in 0..a.len() { for i in 0..a.len() {
c[i] = a[i] + b[i]; c[i] = a[i] + b[i];
} }
c Ok(c)
} }
fn vec_add_point(a: &[EdwardsProjective], b: &[EdwardsProjective]) -> Vec<EdwardsProjective> { fn vec_add_point(
// TODO require len equal a: &[EdwardsProjective],
b: &[EdwardsProjective],
) -> Result<Vec<EdwardsProjective>, String> {
if a.len() != b.len() {
return Err(format!(
"a.len()={} must be equal to b.len()={}",
a.len(),
b.len()
));
}
let mut c: Vec<EdwardsProjective> = vec![EdwardsProjective::zero(); a.len()]; let mut c: Vec<EdwardsProjective> = vec![EdwardsProjective::zero(); a.len()];
for i in 0..a.len() { for i in 0..a.len() {
c[i] = a[i] + b[i]; c[i] = a[i] + b[i];
} }
c Ok(c)
} }
fn vec_scalar_mul_field(a: &[Fr], b: &Fr) -> Vec<Fr> { fn vec_scalar_mul_field(a: &[Fr], b: &Fr) -> Vec<Fr> {
@@ -184,26 +256,15 @@ fn vec_scalar_mul_point(a: &[EdwardsProjective], b: &Fr) -> Vec<EdwardsProjectiv
c c
} }
#[allow(dead_code)]
fn powers_of(x: Fr, d: u32) -> Vec<Fr> { fn powers_of(x: Fr, d: u32) -> Vec<Fr> {
let mut c: Vec<Fr> = vec![Fr::zero(); d as usize]; let mut c: Vec<Fr> = vec![Fr::zero(); d as usize];
c[0] = x; c[0] = x;
for i in 1..d as usize { for i in 1..d as usize {
// TODO redo better
c[i] = c[i - 1] * x; c[i] = c[i - 1] * x;
} }
c c
} }
// fn inner_product<T>(a: Vec<T>, b: Vec<T>) -> T {
// // require lens equal
// let mut c: T = Zero();
// for i in 0..a.len() {
// c = c + a[i] * b[i];
// }
// c
// }
#[cfg(test)] #[cfg(test)]
#[allow(non_snake_case)] #[allow(non_snake_case)]
mod tests { mod tests {
@@ -211,12 +272,6 @@ mod tests {
#[test] #[test]
fn test_utils() { fn test_utils() {
// let a = Fr::from(1 as u32);
// let b = Fr::one();
// println!("A: {:?}", Fr::from(1 as u32));
// println!("A: {:?}", a);
// println!("B: {:?}", b);
let a = vec![ let a = vec![
Fr::from(1 as u32), Fr::from(1 as u32),
Fr::from(2 as u32), Fr::from(2 as u32),
@@ -229,15 +284,41 @@ mod tests {
Fr::from(3 as u32), Fr::from(3 as u32),
Fr::from(4 as u32), Fr::from(4 as u32),
]; ];
let c = inner_product_field(&a, &b); let c = inner_product_field(&a, &b).unwrap();
println!("c: {:?}", c); assert_eq!(c, Fr::from(30 as u32));
// let result = 2 + 2;
// assert_eq!(result, 4);
} }
#[test] #[test]
fn test_inner_product() { fn test_homomorphic_property() {
let d = 8;
let ipa = IPA::new(d);
let a = vec![
Fr::from(1 as u32),
Fr::from(2 as u32),
Fr::from(3 as u32),
Fr::from(4 as u32),
Fr::from(5 as u32),
Fr::from(6 as u32),
Fr::from(7 as u32),
Fr::from(8 as u32),
];
let b = a.clone();
let mut rng = ark_std::rand::thread_rng();
let r = Fr::rand(&mut rng);
let s = Fr::rand(&mut rng);
let vc_a = ipa.commit(&a, r).unwrap();
let vc_b = ipa.commit(&b, s).unwrap();
let expected_vc_c = ipa.commit(&vec_add(&a, &b).unwrap(), r + s).unwrap();
let vc_c = vc_a + vc_b;
assert_eq!(vc_c, expected_vc_c);
}
#[test]
fn test_inner_product_argument_proof() {
let d = 8; let d = 8;
let mut ipa = IPA::new(d); let mut ipa = IPA::new(d);
@@ -257,8 +338,8 @@ mod tests {
let r = Fr::rand(&mut ipa.rng); let r = Fr::rand(&mut ipa.rng);
let mut P = ipa.commit(&a, r); let mut P = ipa.commit(&a, r).unwrap();
let v = inner_product_field(&a, &b); let v = inner_product_field(&a, &b).unwrap();
let U = EdwardsProjective::rand(&mut ipa.rng); let U = EdwardsProjective::rand(&mut ipa.rng);
@@ -270,8 +351,8 @@ mod tests {
P = P + U.mul(v.into_repr()); P = P + U.mul(v.into_repr());
let proof = ipa.ipa(&a, &b, &u, &U); let proof = ipa.ipa(&a, &b, &u, &U).unwrap();
let verif = ipa.verify(&P, &proof, &r, &u, &U); let verif = ipa.verify(&x, &P, &proof, &r, &u, &U).unwrap();
assert!(verif); assert!(verif);
} }
} }