Browse Source

add sha256-chain example using arkworks to define the circuit

reduce-memory-usage
arnaucube 3 months ago
parent
commit
9964cf37e9
5 changed files with 582 additions and 264 deletions
  1. +20
    -9
      README.md
  2. +237
    -0
      src/keccak_chain.rs
  3. +3
    -255
      src/lib.rs
  4. +273
    -0
      src/sha_chain.rs
  5. +49
    -0
      src/utils.rs

+ 20
- 9
README.md

@ -1,21 +1,32 @@
# keccak-chain-sonobe
# hash-chain-sonobe
Repo showcasing usage of [Sonobe](https://github.com/privacy-scaling-explorations/sonobe) with [Circom](https://github.com/iden3/circom) circuits.
Proves a chain of keccak256 hashes, using the [vocdoni/keccak256-circom](https://github.com/vocdoni/keccak256-circom) circuit, with [Nova](https://eprint.iacr.org/2021/370.pdf)+[CycleFold](https://eprint.iacr.org/2023/1192.pdf).
Repo showcasing usage of [Sonobe](https://github.com/privacy-scaling-explorations/sonobe) with [Arkworks](https://github.com/arkworks-rs) and [Circom](https://github.com/iden3/circom) circuits.
The main idea is to prove $z_n = H(H(...~H(H(H(z_0)))))$, where $n$ is the number of Keccak256 hashes ($H$) that we compute. Proving this in a 'normal' R1CS circuit for a large $n$ would be too costly, but with folding we can manage to prove it in a reasonable time span. The main idea is to prove $z_n = H(H(...~H(H(H(z_0)))))$, where $n$ is the number of Keccak256 hashes ($H$) that we compute. Proving this in a 'normal' R1CS circuit for a large $n$ would be too costly, but with folding we can manage to prove it in a reasonable time span.
For more info about Sonobe, check out [Sonobe's docs](https://privacy-scaling-explorations.github.io/sonobe-docs). For more info about Sonobe, check out [Sonobe's docs](https://privacy-scaling-explorations.github.io/sonobe-docs).
<p align="center">
<img src="https://privacy-scaling-explorations.github.io/sonobe-docs/imgs/folding-main-idea-diagram.png" style="width:70%;" />
</p>
### Usage ### Usage
Assuming rust and circom have been installed:
### sha_chain.rs (arkworks circuit)
Proves a chain of SHA256 hashes, using the [arkworks/sha256](https://github.com/arkworks-rs/crypto-primitives/blob/main/crypto-primitives/src/crh/sha256/constraints.rs) circuit, with [Nova](https://eprint.iacr.org/2021/370.pdf)+[CycleFold](https://eprint.iacr.org/2023/1192.pdf).
- `cargo test --release sha_chain -- --nocapture`
### keccak_chain.rs (circom circuit)
Proves a chain of keccak256 hashes, using the [vocdoni/keccak256-circom](https://github.com/vocdoni/keccak256-circom) circuit, with [Nova](https://eprint.iacr.org/2021/370.pdf)+[CycleFold](https://eprint.iacr.org/2023/1192.pdf).
Assuming rust and circom have been installed:
- `./compile-circuit.sh` - `./compile-circuit.sh`
- `cargo test --release -- --nocapture`
- `cargo test --release keccak_chain -- --nocapture`
Note: the Circom variant currently has a bit of extra overhead since at each folding step it uses Circom witness generation to obtain the witness and then it imports it into the arkworks constraint system.
### Repo structure ### Repo structure
- the Circom circuit to be folded is defined at [./circuit/keccak-chain.circom](https://github.com/arnaucube/keccak-chain-sonobe/blob/main/circuit/keccak-chain.circom)
- the logic to fold the circuit using Sonobe is defined at [src/lib.rs](https://github.com/arnaucube/keccak-chain-sonobe/blob/main/src/lib.rs)
- (it contains some extra sanity check that would not be needed in a real-world use case)
- the Circom circuit (that defines the keccak-chain) to be folded is defined at [./circuit/keccak-chain.circom](https://github.com/arnaucube/hash-chain-sonobe/blob/main/circuit/keccak-chain.circom)
- the logic to fold the circuit using Sonobe is defined at [src/{sha_chain, keccak_chain}.rs](https://github.com/arnaucube/hash-chain-sonobe/blob/main/src)

+ 237
- 0
src/keccak_chain.rs

@ -0,0 +1,237 @@
///
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
///
#[cfg(test)]
mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use ark_groth16::Groth16;
use ark_ff::PrimeField;
use std::path::PathBuf;
use std::rc::Rc;
use std::time::Instant;
use folding_schemes::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
Nova, PreprocessorParam,
},
frontend::{circom::CircomFCircuit, FCircuit},
transcript::poseidon::poseidon_canonical_config,
Decider, Error, FoldingScheme,
};
use solidity_verifiers::{
utils::get_function_selector_for_nova_cyclefold_verifier,
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
NovaCycleFoldVerifierKey,
};
use crate::utils::tests::*;
// function to compute the next state of the folding via rust-native code (not Circom). Used to
// check the Circom values.
use tiny_keccak::{Hasher, Keccak};
fn rust_native_step<F: PrimeField>(
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let b = f_vec_bits_to_bytes(z_i.to_vec());
let mut h = Keccak::v256();
h.update(&b);
let mut z_i1 = [0u8; 32];
h.finalize(&mut z_i1);
bytes_to_f_vec_bits(z_i1.to_vec())
}
#[test]
fn full_flow() {
// set how many steps of folding we want to compute
let n_steps = 1000;
// set the initial state
let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
// initialize the Circom circuit
let r1cs_path = PathBuf::from("./circuit/keccak-chain.r1cs");
let wasm_path = PathBuf::from("./circuit/keccak-chain_js/keccak-chain.wasm");
let f_circuit_params = (r1cs_path, wasm_path, 32 * 8, 0);
let mut f_circuit = CircomFCircuit::<Fr>::new(f_circuit_params).unwrap();
// Note (optional): for more speed, we can set a custom rust-native logic, which will be
// used for the `step_native` method instead of extracting the values from the circom
// witness:
f_circuit.set_custom_step_native(Rc::new(rust_native_step));
// ----------------
// Sanity check
// check that the f_circuit produces valid R1CS constraints
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
let cs = ConstraintSystem::<Fr>::new_ref();
let z_0_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
let z_1_var = f_circuit
.generate_step_constraints(cs.clone(), 1, z_0_var, vec![])
.unwrap();
// check z_1_var against the native z_1
let z_1_native = f_circuit.step_native(1, z_0.clone(), vec![]).unwrap();
assert_eq!(z_1_var.value().unwrap(), z_1_native);
// check that the constraint system is satisfied
assert!(cs.is_satisfied().unwrap());
// ----------------
// define type aliases to avoid writting the whole type each time
pub type N =
Nova<G1, GVar, G2, GVar2, CircomFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>, false>;
pub type D = DeciderEth<
G1,
GVar,
G2,
GVar2,
CircomFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
N,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let start = Instant::now();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Nova params generated: {:?}", start.elapsed());
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit.clone(), z_0.clone()).unwrap();
// prepare the Decider prover & verifier params
let start = Instant::now();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
println!("Decider params generated: {:?}", start.elapsed());
// run n steps of the folding iteration
let start_full = Instant::now();
for _ in 0..n_steps {
let start = Instant::now();
nova.prove_step(rng, vec![], None).unwrap();
println!(
"Nova::prove_step (keccak256 through Circom) {}: {:?}",
nova.i,
start.elapsed()
);
}
println!("Nova's all steps time: {:?}", start_full.elapsed());
// perform the hash chain natively in rust (which uses a rust Keccak256 library)
let mut z_i_native = z_0.clone();
for i in 0..n_steps {
z_i_native = rust_native_step(i, z_i_native.clone(), vec![]).unwrap();
}
// check that the value of the last folding state (nova.z_i) computed through folding, is
// equal to the natively computed hash using the rust_native_step method
assert_eq!(nova.z_i, z_i_native);
// ----------------
// Sanity check
// The following lines contain a sanity check that checks the IVC proof (before going into
// the zkSNARK proof)
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
N::verify(
nova_params.1, // Nova's verifier params
z_0,
nova.z_i.clone(),
nova.i,
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
// ----------------
let rng = rand::rngs::OsRng;
let start = Instant::now();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = D::verify(
decider_vp.clone(),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
&nova.U_i,
&nova.u_i,
&proof,
)
.unwrap();
assert!(verified);
println!("Decider proof verification: {}", verified);
// generate the Solidity code that verifies this Decider final proof
let function_selector =
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
let calldata: Vec<u8> = prepare_calldata(
function_selector,
nova.i,
nova.z_0,
nova.z_i,
&nova.U_i,
&nova.u_i,
proof,
)
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
/*
* Note: since we're proving the Keccak256 (ie. 32 byte size, 256 bits), the number of
* inputs is too big for the contract. In a real world use case we would convert the binary
* representation into a couple of field elements which would be inputs of the Decider
* circuit, and in-circuit we would obtain the binary representation to be used for the
* final proof check.
*
* The following code is commented out for that reason.
// verify the proof against the solidity code in the EVM
use solidity_verifiers::evm::{compile_solidity, Evm};
let nova_cyclefold_verifier_bytecode =
compile_solidity(&decider_solidity_code, "NovaDecider");
let mut evm = Evm::default();
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
let (_, output) = evm.call(verifier_address, calldata.clone());
assert_eq!(*output.last().unwrap(), 1);
*/
// save smart contract and the calldata
println!("storing nova-verifier.sol and the calldata into files");
use std::fs;
fs::create_dir_all("./solidity").unwrap();
fs::write(
"./solidity/nova-verifier.sol",
decider_solidity_code.clone(),
)
.unwrap();
fs::write("./solidity/solidity-calldata.calldata", calldata.clone()).unwrap();
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
fs::write("./solidity/solidity-calldata.inputs", s.join(",\n")).expect("");
}
}

+ 3
- 255
src/lib.rs

@ -1,259 +1,7 @@
#![allow(non_snake_case)] #![allow(non_snake_case)]
#![allow(non_camel_case_types)] #![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)] #![allow(clippy::upper_case_acronyms)]
///
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
///
#[cfg(test)]
mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use ark_groth16::Groth16;
use ark_ff::{BigInteger, BigInteger256, PrimeField};
use std::path::PathBuf;
use std::rc::Rc;
use std::time::Instant;
use folding_schemes::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
Nova, PreprocessorParam,
},
frontend::{circom::CircomFCircuit, FCircuit},
transcript::poseidon::poseidon_canonical_config,
Decider, Error, FoldingScheme,
};
use solidity_verifiers::{
utils::get_function_selector_for_nova_cyclefold_verifier,
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
NovaCycleFoldVerifierKey,
};
fn f_vec_to_bits<F: PrimeField>(v: Vec<F>) -> Vec<bool> {
v.iter()
.map(|v_i| {
if v_i.is_one() {
return true;
}
false
})
.collect()
}
// returns the bytes representation of the given vector of finite field elements that represent
// bits
fn f_vec_to_bytes<F: PrimeField>(v: Vec<F>) -> Vec<u8> {
let b = f_vec_to_bits(v);
BigInteger256::from_bits_le(&b).to_bytes_le()
}
fn bytes_to_f_vec<F: PrimeField>(b: Vec<u8>) -> Result<Vec<F>, Error> {
use num_bigint::BigUint;
let bi = BigUint::from_bytes_le(&b);
let bi = BigInteger256::try_from(bi).unwrap();
let bits = bi.to_bits_le();
Ok(bits
.iter()
.map(|&e| if e { F::one() } else { F::zero() })
.collect())
}
// function to compute the next state of the folding via rust-native code (not Circom). Used to
// check the Circom values.
use tiny_keccak::{Hasher, Keccak};
fn rust_native_step<F: PrimeField>(
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let b = f_vec_to_bytes(z_i.to_vec());
let mut h = Keccak::v256();
h.update(&b);
let mut z_i1 = [0u8; 32];
h.finalize(&mut z_i1);
bytes_to_f_vec(z_i1.to_vec())
}
#[test]
fn full_flow() {
// set how many steps of folding we want to compute
let n_steps = 10;
// set the initial state
let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
// initialize the Circom circuit
let r1cs_path = PathBuf::from("./circuit/keccak-chain.r1cs");
let wasm_path = PathBuf::from("./circuit/keccak-chain_js/keccak-chain.wasm");
let f_circuit_params = (r1cs_path, wasm_path, 32 * 8, 0);
let mut f_circuit = CircomFCircuit::<Fr>::new(f_circuit_params).unwrap();
// Note (optional): for more speed, we can set a custom rust-native logic, which will be
// used for the `step_native` method instead of extracting the values from the circom
// witness:
f_circuit.set_custom_step_native(Rc::new(rust_native_step));
// ----------------
// Sanity check
// check that the f_circuit produces valid R1CS constraints
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
let cs = ConstraintSystem::<Fr>::new_ref();
let z_0_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
let z_1_var = f_circuit
.generate_step_constraints(cs.clone(), 1, z_0_var, vec![])
.unwrap();
// check z_1_var against the native z_1
let z_1_native = f_circuit.step_native(1, z_0.clone(), vec![]).unwrap();
assert_eq!(z_1_var.value().unwrap(), z_1_native);
// check that the constraint system is satisfied
assert!(cs.is_satisfied().unwrap());
// ----------------
// define type aliases to avoid writting the whole type each time
pub type N =
Nova<G1, GVar, G2, GVar2, CircomFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>, false>;
pub type D = DeciderEth<
G1,
GVar,
G2,
GVar2,
CircomFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
N,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
let start = Instant::now();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Nova params generated: {:?}", start.elapsed());
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit.clone(), z_0.clone()).unwrap();
// prepare the Decider prover & verifier params
let start = Instant::now();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
println!("Decider params generated: {:?}", start.elapsed());
// run n steps of the folding iteration
for _ in 0..n_steps {
let start = Instant::now();
nova.prove_step(rng, vec![], None).unwrap();
println!("Nova::prove_step {}: {:?}", nova.i, start.elapsed());
}
// perform the hash chain natively in rust (which uses a rust Keccak256 library)
let mut z_i_native = z_0.clone();
for i in 0..n_steps {
z_i_native = rust_native_step(i, z_i_native.clone(), vec![]).unwrap();
}
// check that the value of the last folding state (nova.z_i) computed through folding, is
// equal to the natively computed hash using the rust_native_step method
assert_eq!(nova.z_i, z_i_native);
// ----------------
// Sanity check
// The following lines contain a sanity check that checks the IVC proof (before going into
// the zkSNARK proof)
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
N::verify(
nova_params.1, // Nova's verifier params
z_0,
nova.z_i.clone(),
nova.i,
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
// ----------------
let rng = rand::rngs::OsRng;
let start = Instant::now();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = D::verify(
decider_vp.clone(),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
&nova.U_i,
&nova.u_i,
&proof,
)
.unwrap();
assert!(verified);
println!("Decider proof verification: {}", verified);
// generate the Solidity code that verifies this Decider final proof
let function_selector =
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
let calldata: Vec<u8> = prepare_calldata(
function_selector,
nova.i,
nova.z_0,
nova.z_i,
&nova.U_i,
&nova.u_i,
proof,
)
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
/*
* Note: since we're proving the Keccak256 (ie. 32 byte size, 256 bits), the number of
* inputs is too big for the contract. In a real world use case we would convert the binary
* representation into a couple of field elements which would be inputs of the Decider
* circuit, and in-circuit we would obtain the binary representation to be used for the
* final proof check.
*
* The following code is commented out for that reason.
// verify the proof against the solidity code in the EVM
use solidity_verifiers::evm::{compile_solidity, Evm};
let nova_cyclefold_verifier_bytecode =
compile_solidity(&decider_solidity_code, "NovaDecider");
let mut evm = Evm::default();
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
let (_, output) = evm.call(verifier_address, calldata.clone());
assert_eq!(*output.last().unwrap(), 1);
*/
// save smart contract and the calldata
println!("storing nova-verifier.sol and the calldata into files");
use std::fs;
fs::create_dir_all("./solidity").unwrap();
fs::write(
"./solidity/nova-verifier.sol",
decider_solidity_code.clone(),
)
.unwrap();
fs::write("./solidity/solidity-calldata.calldata", calldata.clone()).unwrap();
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
fs::write("./solidity/solidity-calldata.inputs", s.join(",\n")).expect("");
}
}
mod keccak_chain;
mod sha_chain;
mod utils;

+ 273
- 0
src/sha_chain.rs

@ -0,0 +1,273 @@
///
/// This example performs the full flow:
/// - define the circuit to be folded
/// - fold the circuit with Nova+CycleFold's IVC
/// - generate a DeciderEthCircuit final proof
/// - generate the Solidity contract that verifies the proof
/// - verify the proof in the EVM
///
#[cfg(test)]
mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
use ark_groth16::Groth16;
use ark_ff::PrimeField;
use std::time::Instant;
use ark_crypto_primitives::crh::sha256::{constraints::Sha256Gadget, digest::Digest, Sha256};
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::{bits::uint8::UInt8, boolean::Boolean, ToBitsGadget, ToBytesGadget};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use std::marker::PhantomData;
use folding_schemes::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{
decider_eth::{prepare_calldata, Decider as DeciderEth},
Nova, PreprocessorParam,
},
frontend::FCircuit,
transcript::poseidon::poseidon_canonical_config,
Decider, Error, FoldingScheme,
};
use solidity_verifiers::{
utils::get_function_selector_for_nova_cyclefold_verifier,
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
NovaCycleFoldVerifierKey,
};
use crate::utils::tests::*;
/// Test circuit to be folded
#[derive(Clone, Copy, Debug)]
pub struct SHA256FoldStepCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for SHA256FoldStepCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Result<Self, Error> {
Ok(Self { _f: PhantomData })
}
fn state_len(&self) -> usize {
32
}
fn external_inputs_len(&self) -> usize {
0
}
// function to compute the next state of the folding via rust-native code (not Circom). Used to
// check the Circom values.
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let b = f_vec_to_bytes(z_i.to_vec());
let mut sha256 = Sha256::default();
sha256.update(b);
let z_i1 = sha256.finalize().to_vec();
bytes_to_f_vec(z_i1.to_vec())
}
fn generate_step_constraints(
&self,
_cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
_external_inputs: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let mut sha256_var = Sha256Gadget::default();
let z_i_u8: Vec<UInt8<F>> = z_i
.iter()
.map(|f| UInt8::<F>::from_bits_le(&f.to_bits_le().unwrap()[..8]))
.collect::<Vec<_>>();
sha256_var.update(&z_i_u8).unwrap();
let z_i1_u8 = sha256_var.finalize()?.to_bytes()?;
let z_i1: Vec<FpVar<F>> = z_i1_u8
.iter()
.map(|e| {
let bits = e.to_bits_le().unwrap();
Boolean::<F>::le_bits_to_fp_var(&bits).unwrap()
})
.collect();
Ok(z_i1)
}
}
#[test]
fn full_flow() {
// set how many steps of folding we want to compute
let n_steps = 100;
// set the initial state
// let z_0_aux: Vec<u32> = vec![0_u32; 32 * 8];
let z_0_aux: Vec<u8> = vec![0_u8; 32];
let z_0: Vec<Fr> = z_0_aux.iter().map(|v| Fr::from(*v)).collect::<Vec<Fr>>();
let f_circuit = SHA256FoldStepCircuit::<Fr>::new(()).unwrap();
// ----------------
// Sanity check
// check that the f_circuit produces valid R1CS constraints
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
let cs = ConstraintSystem::<Fr>::new_ref();
let z_0_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_0.clone())).unwrap();
let z_1_var = f_circuit
.generate_step_constraints(cs.clone(), 1, z_0_var, vec![])
.unwrap();
// check z_1_var against the native z_1
let z_1_native = f_circuit.step_native(1, z_0.clone(), vec![]).unwrap();
assert_eq!(z_1_var.value().unwrap(), z_1_native);
// check that the constraint system is satisfied
assert!(cs.is_satisfied().unwrap());
// ----------------
// define type aliases to avoid writting the whole type each time
pub type N = Nova<
G1,
GVar,
G2,
GVar2,
SHA256FoldStepCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<G2>,
false,
>;
pub type D = DeciderEth<
G1,
GVar,
G2,
GVar2,
SHA256FoldStepCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<G2>,
Groth16<Bn254>,
N,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
// prepare the Nova prover & verifier params
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit);
let start = Instant::now();
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Nova params generated: {:?}", start.elapsed());
// initialize the folding scheme engine, in our case we use Nova
let mut nova = N::init(&nova_params, f_circuit, z_0.clone()).unwrap();
// prepare the Decider prover & verifier params
let start = Instant::now();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
println!("Decider params generated: {:?}", start.elapsed());
// run n steps of the folding iteration
let start_full = Instant::now();
for _ in 0..n_steps {
let start = Instant::now();
nova.prove_step(rng, vec![], None).unwrap();
println!(
"Nova::prove_step (sha256) {}: {:?}",
nova.i,
start.elapsed()
);
}
println!("Nova's all steps time: {:?}", start_full.elapsed());
// ----------------
// Sanity check
// The following lines contain a sanity check that checks the IVC proof (before going into
// the zkSNARK proof)
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
N::verify(
nova_params.1, // Nova's verifier params
z_0,
nova.z_i.clone(),
nova.i,
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
// ----------------
let rng = rand::rngs::OsRng;
let start = Instant::now();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("generated Decider proof: {:?}", start.elapsed());
let verified = D::verify(
decider_vp.clone(),
nova.i,
nova.z_0.clone(),
nova.z_i.clone(),
&nova.U_i,
&nova.u_i,
&proof,
)
.unwrap();
assert!(verified);
println!("Decider proof verification: {}", verified);
// generate the Solidity code that verifies this Decider final proof
let function_selector =
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
let calldata: Vec<u8> = prepare_calldata(
function_selector,
nova.i,
nova.z_0,
nova.z_i,
&nova.U_i,
&nova.u_i,
proof,
)
.unwrap();
// prepare the setup params for the solidity verifier
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
// generate the solidity code
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
/*
* Note: since we're proving the SHA256 (ie. 32 byte size, 256 bits), the number of inputs
* is too big for the contract. In a real world use case we would convert the binary
* representation into a couple of field elements which would be inputs of the Decider
* circuit, and in-circuit we would obtain the binary representation to be used for the
* final proof check.
*
* The following code is commented out for that reason.
// verify the proof against the solidity code in the EVM
use solidity_verifiers::evm::{compile_solidity, Evm};
let nova_cyclefold_verifier_bytecode =
compile_solidity(&decider_solidity_code, "NovaDecider");
let mut evm = Evm::default();
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
let (_, output) = evm.call(verifier_address, calldata.clone());
assert_eq!(*output.last().unwrap(), 1);
*/
// save smart contract and the calldata
println!("storing nova-verifier.sol and the calldata into files");
use std::fs;
fs::create_dir_all("./solidity").unwrap();
fs::write(
"./solidity/nova-verifier.sol",
decider_solidity_code.clone(),
)
.unwrap();
fs::write("./solidity/solidity-calldata.calldata", calldata.clone()).unwrap();
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
fs::write("./solidity/solidity-calldata.inputs", s.join(",\n")).expect("");
}
}

+ 49
- 0
src/utils.rs

@ -0,0 +1,49 @@
#[cfg(test)]
pub(crate) mod tests {
use ark_ff::{BigInteger, BigInteger256, PrimeField};
use folding_schemes::Error;
/// interprets the vector of finite field elements as a vector of bytes
pub(crate) fn f_vec_to_bytes<F: PrimeField>(b: Vec<F>) -> Vec<u8> {
b.iter()
.map(|e| {
let bytes: Vec<u8> = e.into_bigint().to_bytes_le();
bytes[0]
})
.collect()
}
/// for a given byte array, returns the bytes representation in finite field elements
pub(crate) fn bytes_to_f_vec<F: PrimeField>(b: Vec<u8>) -> Result<Vec<F>, Error> {
Ok(b.iter()
.map(|&e| F::from_le_bytes_mod_order(&[e]))
.collect::<Vec<F>>())
}
/// returns the bytes representation of the given vector of finite field elements that represent
/// bits
pub(crate) fn f_vec_bits_to_bytes<F: PrimeField>(v: Vec<F>) -> Vec<u8> {
let b = f_vec_to_bits(v);
BigInteger256::from_bits_le(&b).to_bytes_le()
}
/// for a given byte array, returns its bits representation in finite field elements
pub(crate) fn bytes_to_f_vec_bits<F: PrimeField>(b: Vec<u8>) -> Result<Vec<F>, Error> {
use num_bigint::BigUint;
let bi = BigUint::from_bytes_le(&b);
let bi = BigInteger256::try_from(bi).unwrap();
let bits = bi.to_bits_le();
Ok(bits
.iter()
.map(|&e| if e { F::one() } else { F::zero() })
.collect())
}
/// interprets the given vector of finite field elements as a vector of bits
pub(crate) fn f_vec_to_bits<F: PrimeField>(v: Vec<F>) -> Vec<bool> {
v.iter()
.map(|v_i| {
if v_i.is_one() {
return true;
}
false
})
.collect()
}
}

Loading…
Cancel
Save