You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

101 lines
3.3 KiB

  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{amsfonts}
  4. \usepackage{amsthm}
  5. \usepackage{amsmath}
  6. \usepackage{enumerate}
  7. \usepackage{hyperref}
  8. \hypersetup{
  9. colorlinks,
  10. citecolor=black,
  11. filecolor=black,
  12. linkcolor=black,
  13. urlcolor=black
  14. }
  15. % custom solution environment to set custom numbers
  16. \theoremstyle{definition}
  17. \newtheorem{innersolution}{Solution}
  18. \newenvironment{solution}[1]
  19. {\renewcommand\theinnersolution{#1}\innersolution}
  20. {\endinnersolution}
  21. \title{Seminar exercises}
  22. \author{ }
  23. \date{February 2022}
  24. \begin{document}
  25. \maketitle
  26. \begin{solution}{1.9}\
  27. \begin{enumerate}[1.]
  28. \item Let $f(a) = u$, then $g(f(a)) = g(u)$, so $g \circ f$ is a function.
  29. \item We can see that composition of functions is associative as follows:\\
  30. we know that $[ f \circ g](x) = f(g(x)), \forall x \in A$,\\
  31. so,
  32. $$(h \circ [g \circ f])(x) = h([g \circ f](x)) = h(g(f(x)))$$
  33. \\
  34. and
  35. $$([h \circ g] \circ f)(x) = [h \circ g](f(x)) = h(g(f(x)))$$
  36. Then, we can see that $$h \circ (g \circ f) = h(g(f(x))) = (h \circ g) \circ f$$
  37. \end{enumerate}
  38. \end{solution}
  39. \begin{solution}{1.28}\
  40. \emph{(WIP)}\\
  41. It is isomorphic to the cosets of the \emph{nth} roots of unity, which are $\mathbb{G}_n = \{w_k\}^{n-1}_{k=0}$, where $w_k=e^{\frac{2 \pi i}{n}}$.
  42. \end{solution}
  43. \begin{solution}{2.2}\
  44. To prove that the inverse $x^{-1}$ is unique, assume $x^{-1}$ and $\tilde{x}^{-1}$ are two inverses of $x$.\\
  45. By the definition of the inverse, we know that $x \cdot x^{-1} = e$. And by the definition of the unit element, we know that $x \cdot e = x$.\\
  46. Then, $$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = x^{-1} \cdot e = x^{-1}$$
  47. and $$(x^{-1} \cdot x) \cdot \tilde{x}^{-1} = e \cdot \tilde{x}^{-1} = \tilde{x}^{-1}$$
  48. By associativity property of groups, we know that
  49. $$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = (x^{-1} \cdot x) \cdot \tilde{x}^{-1}$$
  50. so, $$x^{-1} \cdot e = e \cdot \tilde{x}^{-1}$$
  51. which is $$x^{-1} = \tilde{x}^{-1}$$
  52. So, for any $x \in G$, the inverse $x^{-1}$ is unique.
  53. \end{solution}
  54. \begin{solution}{2.5}\
  55. Let $\alpha = (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})$, $\beta = (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix})$, then,
  56. $$
  57. \alpha \cdot \beta =
  58. (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})
  59. \cdot (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix})
  60. = (\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix})
  61. $$
  62. and
  63. $$
  64. \beta \cdot \alpha =
  65. (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix}) \cdot
  66. (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})
  67. = (\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix})
  68. $$
  69. So, we can see that
  70. $$
  71. (\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix})
  72. \neq
  73. (\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix})
  74. $$
  75. so, $\alpha \cdot \beta \neq \beta \cdot \alpha$.
  76. \end{solution}
  77. \begin{solution}{2.26}\
  78. We want to prove that $f: G \rightarrow H$ is a \emph{monomorphism} iff $\ker f=\{e\}$.\\
  79. We know that $f$ is a \emph{monomorphism} (\emph{injective}) iff $\forall a, b \in G$, $f(a) = f(b) \Rightarrow a = b$.\\
  80. Let $a, b \in G$ such that $f(a)=f(b)$. Then
  81. $$f(a) f(b)^{-1} = f(b) (f(b))^{-1} = e$$
  82. $$f(a) f(b^{-1}) = e$$
  83. $$f(ab^{-1}) = e$$
  84. as $\ker f = \{e\}$, then we see that $ab^{-1}=e$, so $a=b$. Thus $f$ is a \emph{monomorphism}.
  85. \end{solution}
  86. \end{document}