|
|
\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amsmath} \usepackage{enumerate} \usepackage{hyperref} \hypersetup{ colorlinks, citecolor=black, filecolor=black, linkcolor=black, urlcolor=black }
% custom solution environment to set custom numbers
\theoremstyle{definition} \newtheorem{innersolution}{Solution} \newenvironment{solution}[1] {\renewcommand\theinnersolution{#1}\innersolution} {\endinnersolution}
\title{Seminar exercises} \author{ } \date{February 2022}
\begin{document} \maketitle
\begin{solution}{1.9}\ \begin{enumerate}[1.] \item Let $f(a) = u$, then $g(f(a)) = g(u)$, so $g \circ f$ is a function. \item We can see that composition of functions is associative as follows:\\ we know that $[ f \circ g](x) = f(g(x)), \forall x \in A$,\\ so, $$(h \circ [g \circ f])(x) = h([g \circ f](x)) = h(g(f(x)))$$ \\ and $$([h \circ g] \circ f)(x) = [h \circ g](f(x)) = h(g(f(x)))$$ Then, we can see that $$h \circ (g \circ f) = h(g(f(x))) = (h \circ g) \circ f$$ \end{enumerate} \end{solution}
\begin{solution}{1.28}\ \emph{(WIP)}\\ It is isomorphic to the cosets of the \emph{nth} roots of unity, which are $\mathbb{G}_n = \{w_k\}^{n-1}_{k=0}$, where $w_k=e^{\frac{2 \pi i}{n}}$. \end{solution}
\begin{solution}{2.2}\
To prove that the inverse $x^{-1}$ is unique, assume $x^{-1}$ and $\tilde{x}^{-1}$ are two inverses of $x$.\\ By the definition of the inverse, we know that $x \cdot x^{-1} = e$. And by the definition of the unit element, we know that $x \cdot e = x$.\\ Then, $$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = x^{-1} \cdot e = x^{-1}$$ and $$(x^{-1} \cdot x) \cdot \tilde{x}^{-1} = e \cdot \tilde{x}^{-1} = \tilde{x}^{-1}$$ By associativity property of groups, we know that $$x^{-1} \cdot (x \cdot \tilde{x}^{-1}) = (x^{-1} \cdot x) \cdot \tilde{x}^{-1}$$ so, $$x^{-1} \cdot e = e \cdot \tilde{x}^{-1}$$ which is $$x^{-1} = \tilde{x}^{-1}$$ So, for any $x \in G$, the inverse $x^{-1}$ is unique. \end{solution}
\begin{solution}{2.5}\
Let $\alpha = (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix})$, $\beta = (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix})$, then, $$
\alpha \cdot \beta = (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix}) \cdot (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix}) = (\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix}) $$
and $$
\beta \cdot \alpha = (\begin{smallmatrix}1 & 2 & 3\\ 3 & 1 & 2\end{smallmatrix}) \cdot (\begin{smallmatrix}1 & 2 & 3\\ 1 & 3 & 2\end{smallmatrix}) = (\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix}) $$
So, we can see that $$
(\begin{smallmatrix}1 & 2 & 3\\ 3 & 2 & 1\end{smallmatrix}) \neq (\begin{smallmatrix}1 & 2 & 3\\ 2 & 1 & 3\end{smallmatrix}) $$
so, $\alpha \cdot \beta \neq \beta \cdot \alpha$. \end{solution}
\begin{solution}{2.26}\
We want to prove that $f: G \rightarrow H$ is a \emph{monomorphism} iff $\ker f=\{e\}$.\\ We know that $f$ is a \emph{monomorphism} (\emph{injective}) iff $\forall a, b \in G$, $f(a) = f(b) \Rightarrow a = b$.\\ Let $a, b \in G$ such that $f(a)=f(b)$. Then $$f(a) f(b)^{-1} = f(b) (f(b))^{-1} = e$$ $$f(a) f(b^{-1}) = e$$ $$f(ab^{-1}) = e$$ as $\ker f = \{e\}$, then we see that $ab^{-1}=e$, so $a=b$. Thus $f$ is a \emph{monomorphism}. \end{solution}
\end{document}
|