|
|
\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsfonts} \usepackage{amsthm} \usepackage{amsmath} \usepackage{enumerate} \usepackage{hyperref}
\begin{filecontents}[overwrite]{galois-theory-notes.bib} @misc{ianstewart, author = {Ian Stewart}, title = {{Galois Theory, Third Edition}}, year = {2004} } \end{filecontents} \nocite{*}
\theoremstyle{definition}
\newtheorem{innerdefn}{Definition} \newenvironment{defn}[1] {\renewcommand\theinnerdefn{#1}\innerdefn} {\endinnerdefn}
\newtheorem{innerthm}{Theorem} \newenvironment{thm}[1] {\renewcommand\theinnerthm{#1}\innerthm} {\endinnerthm}
\newtheorem{innerlemma}{Lemma} \newenvironment{lemma}[1] {\renewcommand\theinnerlemma{#1}\innerlemma} {\endinnerlemma}
\newtheorem{innercor}{Lemma} \newenvironment{cor}[1] {\renewcommand\theinnercor{#1}\innercor} {\endinnercor}
\newtheorem{innereg}{Example} \newenvironment{eg}[1] {\renewcommand\theinnereg{#1}\innereg} {\endinnereg}
\title{Galois Theory notes} \author{arnaucube} \date{2023-2024}
\begin{document}
\maketitle
\begin{abstract} Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$.
The notes are not complete, don't include all the steps neither all the proofs. \end{abstract}
\tableofcontents
\section{Recap on the degree of field extensions}
\begin{defn}{4.10} A \emph{simple extension} is $L:K$ such that $L=K(\alpha)$ for some $\alpha \in L$. \end{defn} \begin{eg}{4.11} Beware, $L=\mathbb{Q}(i, -i, \sqrt{5}, -\sqrt{5}) = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i+\sqrt{5})$. \end{eg}
\begin{defn}{5.5} Let $L:K$, suppose $\alpha \in L$ is algebraic over $K$. Then, the \emph{minimal polynomial} of $\alpha$ over $K$ is the unique monic polynomial $m$ over $K$, $m(t) \in K[t]$, of smallest degree such that $m(\alpha)=0$. \\ eg.: $i \in \mathbb{C}$ is algebraic over $\mathbb{R}$. The minimal polynomial of $i$ over $\mathbb{R}$ is $m(t)=t^2 +1$, so that $m(i)=0$. \end{defn}
\begin{lemma}{5.9} Every polynomial $a \in K[t]$ is congruent modulo $m$ to a unique polynomial of degree $< \delta m$. \end{lemma} \begin{proof} Divide $a / m$ with remainder, $a= qm +r$, with $q,r \in K[t]$ and $\delta r < \delta m$. Then, $a-r=qm$, so $a \equiv r \pmod{m}$.
It remains to prove uniqueness.
Suppose $\exists~ r \equiv s \pmod{m}$, with $\delta r, \delta s < \delta m$. Then, $r-s$ is divisible by $m$, but has smaller degree than $m$.
Therefore, $r-s=0$, so $r=s$, proving uniqueness. \end{proof}
\begin{lemma}{5.14} Let $K(\alpha):K$ be a simple algebraic extension, let $m$ be the minimal polynomial of $\alpha$ over $K$, let $\delta m =n$.
Then $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K$. In particular, $[K(\alpha):K]=n$. \end{lemma}
\begin{defn}{6.2} The degree $[L:K]$ of a field extension $L:K$ is the dimension of L considered as a vector space over $K$.
Equivalently, the dimension of $L$ as a vector space over $K$ is the number of terms in the expression for a general element of $L$ using coefficients from $K$. \end{defn}
\begin{eg}{6.3} \begin{enumerate} \item $\mathbb{C}$ elements are 2-dimensional over $\mathbb{R}$ ($p+qi \in \mathbb{C}$, with $p,q \in \mathbb{R}$), because a basis is $\{1, i\}$, hence $[\mathbb{C}:\mathbb{R}]=2$. \item $[ \mathbb{Q}(i, \sqrt{5}) : \mathbb{Q}]=4$, since the elements $\{1, \sqrt{5}, i, i\sqrt{5}\}$ form a basis for $\mathbb{Q}(i, \sqrt{5})$ over $\mathbb{Q}$. \end{enumerate} \end{eg}
\begin{thm}{6.4}\emph{(Short Tower Law)} If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K]=[M:L]\cdot [L:K]$. \end{thm} \begin{proof} Let $(x_i)_{i \in I}$ be a basis for $L$ over $K$, let $(y_j)_{j \in J}$ be a basis for $M$ over $L$.\\ $\forall i \in I, j \in J$, we have $x_i \in L, u_j \in M$. \\ Want to show that $(x_i y_j)_{i\in I, j\in J}$ is a basis for $M$ over $K$. \begin{enumerate}[i.] \item prove linear independence:\\ Suppose that $$\sum_{ij} k_{ij} x_i y_j = 0 ~(k_{ij} \in K)$$ rearrange $$\sum_j (\underbrace{\sum_i k_{ij} x_i}_{\in L}) y_j = 0 ~(k_{ij} \in K)$$ Since $\sum_i k_{ij} x_i \in L$, and the $y_j \in M$ are linearly independent over $L$, then $\sum_i k_{ij} x_i = 0$. \\ Repeating the argument inside $L$ $\longrightarrow$ $k_{ij}=0 ~~\forall i\in I, j\in J$. \\ So the elements $x_i y_j$ are linearly independent over $K$.
\item prove that $x_i y_j$ span $M$ over $K$:\\ Any $x \in M$ can be written $x=\sum_j \lambda_j y_j$ for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$. Similarly, $\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$ for $\lambda_{ij} \in K$.\\ Putting the pieces together, $x=\sum_{ij} \lambda_{ij} x_i y_j$ as required. \end{enumerate} \end{proof}
\begin{cor}{6.6}\emph{(Tower Law)}\\ If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of $\mathbb{C}$, then $$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1: K_0]$$ \end{cor}
\bibliographystyle{unsrt} \bibliography{galois-theory-notes.bib}
\end{document}
|