You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

151 lines
5.2 KiB

  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{amsfonts}
  4. \usepackage{amsthm}
  5. \usepackage{amsmath}
  6. \usepackage{enumerate}
  7. \usepackage{hyperref}
  8. \begin{filecontents}[overwrite]{galois-theory-notes.bib}
  9. @misc{ianstewart,
  10. author = {Ian Stewart},
  11. title = {{Galois Theory, Third Edition}},
  12. year = {2004}
  13. }
  14. \end{filecontents}
  15. \nocite{*}
  16. \theoremstyle{definition}
  17. \newtheorem{innerdefn}{Definition}
  18. \newenvironment{defn}[1]
  19. {\renewcommand\theinnerdefn{#1}\innerdefn}
  20. {\endinnerdefn}
  21. \newtheorem{innerthm}{Theorem}
  22. \newenvironment{thm}[1]
  23. {\renewcommand\theinnerthm{#1}\innerthm}
  24. {\endinnerthm}
  25. \newtheorem{innerlemma}{Lemma}
  26. \newenvironment{lemma}[1]
  27. {\renewcommand\theinnerlemma{#1}\innerlemma}
  28. {\endinnerlemma}
  29. \newtheorem{innercor}{Lemma}
  30. \newenvironment{cor}[1]
  31. {\renewcommand\theinnercor{#1}\innercor}
  32. {\endinnercor}
  33. \newtheorem{innereg}{Example}
  34. \newenvironment{eg}[1]
  35. {\renewcommand\theinnereg{#1}\innereg}
  36. {\endinnereg}
  37. \title{Galois Theory notes}
  38. \author{arnaucube}
  39. \date{2023-2024}
  40. \begin{document}
  41. \maketitle
  42. \begin{abstract}
  43. Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
  44. Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$.
  45. The notes are not complete, don't include all the steps neither all the proofs.
  46. \end{abstract}
  47. \tableofcontents
  48. \section{Recap on the degree of field extensions}
  49. \begin{defn}{4.10}
  50. A \emph{simple extension} is $L:K$ such that $L=K(\alpha)$ for some $\alpha \in L$.
  51. \end{defn}
  52. \begin{eg}{4.11}
  53. Beware, $L=\mathbb{Q}(i, -i, \sqrt{5}, -\sqrt{5}) = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i+\sqrt{5})$.
  54. \end{eg}
  55. \begin{defn}{5.5}
  56. Let $L:K$, suppose $\alpha \in L$ is algebraic over $K$. Then, the \emph{minimal polynomial} of $\alpha$ over $K$ is the unique monic polynomial $m$ over $K$, $m(t) \in K[t]$, of smallest degree such that $m(\alpha)=0$.
  57. \\
  58. eg.: $i \in \mathbb{C}$ is algebraic over $\mathbb{R}$. The minimal polynomial of $i$ over $\mathbb{R}$ is $m(t)=t^2 +1$, so that $m(i)=0$.
  59. \end{defn}
  60. \begin{lemma}{5.9}
  61. Every polynomial $a \in K[t]$ is congruent modulo $m$ to a unique polynomial of degree $< \delta m$.
  62. \end{lemma}
  63. \begin{proof}
  64. Divide $a / m$ with remainder, $a= qm +r$, with $q,r \in K[t]$ and $\delta r < \delta m$.
  65. Then, $a-r=qm$, so $a \equiv r \pmod{m}$.
  66. It remains to prove uniqueness.
  67. Suppose $\exists~ r \equiv s \pmod{m}$, with $\delta r, \delta s < \delta m$.
  68. Then, $r-s$ is divisible by $m$, but has smaller degree than $m$.
  69. Therefore, $r-s=0$, so $r=s$, proving uniqueness.
  70. \end{proof}
  71. \begin{lemma}{5.14}
  72. Let $K(\alpha):K$ be a simple algebraic extension, let $m$ be the minimal polynomial of $\alpha$ over $K$, let $\delta m =n$.
  73. Then $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K$.
  74. In particular, $[K(\alpha):K]=n$.
  75. \end{lemma}
  76. \begin{defn}{6.2}
  77. The degree $[L:K]$ of a field extension $L:K$ is the dimension of L considered as a vector space over $K$.
  78. Equivalently, the dimension of $L$ as a vector space over $K$ is the number of terms in the expression for a general element of $L$ using coefficients from $K$.
  79. \end{defn}
  80. \begin{eg}{6.3}
  81. \begin{enumerate}
  82. \item $\mathbb{C}$ elements are 2-dimensional over $\mathbb{R}$ ($p+qi \in \mathbb{C}$, with $p,q \in \mathbb{R}$), because a basis is $\{1, i\}$, hence $[\mathbb{C}:\mathbb{R}]=2$.
  83. \item $[ \mathbb{Q}(i, \sqrt{5}) : \mathbb{Q}]=4$, since the elements $\{1, \sqrt{5}, i, i\sqrt{5}\}$ form a basis for $\mathbb{Q}(i, \sqrt{5})$ over $\mathbb{Q}$.
  84. \end{enumerate}
  85. \end{eg}
  86. \begin{thm}{6.4}\emph{(Short Tower Law)}
  87. If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K]=[M:L]\cdot [L:K]$.
  88. \end{thm}
  89. \begin{proof}
  90. Let $(x_i)_{i \in I}$ be a basis for $L$ over $K$,
  91. let $(y_j)_{j \in J}$ be a basis for $M$ over $L$.\\
  92. $\forall i \in I, j \in J$, we have $x_i \in L, u_j \in M$.
  93. \\
  94. Want to show that $(x_i y_j)_{i\in I, j\in J}$ is a basis for $M$ over $K$.
  95. \begin{enumerate}[i.]
  96. \item prove linear independence:\\
  97. Suppose that
  98. $$\sum_{ij} k_{ij} x_i y_j = 0 ~(k_{ij} \in K)$$
  99. rearrange
  100. $$\sum_j (\underbrace{\sum_i k_{ij} x_i}_{\in L}) y_j = 0 ~(k_{ij} \in K)$$
  101. Since $\sum_i k_{ij} x_i \in L$, and the $y_j \in M$ are linearly independent over $L$, then $\sum_i k_{ij} x_i = 0$.
  102. \\
  103. Repeating the argument inside $L$ $\longrightarrow$ $k_{ij}=0 ~~\forall i\in I, j\in J$.
  104. \\
  105. So the elements $x_i y_j$ are linearly independent over $K$.
  106. \item prove that $x_i y_j$ span $M$ over $K$:\\
  107. Any $x \in M$ can be written $x=\sum_j \lambda_j y_j$ for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$.
  108. Similarly, $\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$ for $\lambda_{ij} \in K$.\\
  109. Putting the pieces together, $x=\sum_{ij} \lambda_{ij} x_i y_j$ as required.
  110. \end{enumerate}
  111. \end{proof}
  112. \begin{cor}{6.6}\emph{(Tower Law)}\\
  113. If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of $\mathbb{C}$, then
  114. $$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1: K_0]$$
  115. \end{cor}
  116. \bibliographystyle{unsrt}
  117. \bibliography{galois-theory-notes.bib}
  118. \end{document}