|
|
@ -0,0 +1,151 @@ |
|
|
|
\documentclass{article} |
|
|
|
\usepackage[utf8]{inputenc} |
|
|
|
\usepackage{amsfonts} |
|
|
|
\usepackage{amsthm} |
|
|
|
\usepackage{amsmath} |
|
|
|
\usepackage{enumerate} |
|
|
|
\usepackage{hyperref} |
|
|
|
|
|
|
|
\begin{filecontents}[overwrite]{galois-theory-notes.bib} |
|
|
|
@misc{ianstewart, |
|
|
|
author = {Ian Stewart}, |
|
|
|
title = {{Galois Theory, Third Edition}}, |
|
|
|
year = {2004} |
|
|
|
} |
|
|
|
\end{filecontents} |
|
|
|
\nocite{*} |
|
|
|
|
|
|
|
|
|
|
|
\theoremstyle{definition} |
|
|
|
|
|
|
|
\newtheorem{innerdefn}{Definition} |
|
|
|
\newenvironment{defn}[1] |
|
|
|
{\renewcommand\theinnerdefn{#1}\innerdefn} |
|
|
|
{\endinnerdefn} |
|
|
|
|
|
|
|
\newtheorem{innerthm}{Theorem} |
|
|
|
\newenvironment{thm}[1] |
|
|
|
{\renewcommand\theinnerthm{#1}\innerthm} |
|
|
|
{\endinnerthm} |
|
|
|
|
|
|
|
\newtheorem{innerlemma}{Lemma} |
|
|
|
\newenvironment{lemma}[1] |
|
|
|
{\renewcommand\theinnerlemma{#1}\innerlemma} |
|
|
|
{\endinnerlemma} |
|
|
|
|
|
|
|
\newtheorem{innercor}{Lemma} |
|
|
|
\newenvironment{cor}[1] |
|
|
|
{\renewcommand\theinnercor{#1}\innercor} |
|
|
|
{\endinnercor} |
|
|
|
|
|
|
|
\newtheorem{innereg}{Example} |
|
|
|
\newenvironment{eg}[1] |
|
|
|
{\renewcommand\theinnereg{#1}\innereg} |
|
|
|
{\endinnereg} |
|
|
|
|
|
|
|
|
|
|
|
\title{Galois Theory notes} |
|
|
|
\author{arnaucube} |
|
|
|
\date{2023-2024} |
|
|
|
|
|
|
|
\begin{document} |
|
|
|
|
|
|
|
\maketitle |
|
|
|
|
|
|
|
\begin{abstract} |
|
|
|
Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}. |
|
|
|
|
|
|
|
Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$. |
|
|
|
|
|
|
|
The notes are not complete, don't include all the steps neither all the proofs. |
|
|
|
\end{abstract} |
|
|
|
|
|
|
|
\tableofcontents |
|
|
|
|
|
|
|
\section{Recap on the degree of field extensions} |
|
|
|
|
|
|
|
\begin{defn}{4.10} |
|
|
|
A \emph{simple extension} is $L:K$ such that $L=K(\alpha)$ for some $\alpha \in L$. |
|
|
|
\end{defn} |
|
|
|
\begin{eg}{4.11} |
|
|
|
Beware, $L=\mathbb{Q}(i, -i, \sqrt{5}, -\sqrt{5}) = \mathbb{Q}(i, \sqrt{5}) = \mathbb{Q}(i+\sqrt{5})$. |
|
|
|
\end{eg} |
|
|
|
|
|
|
|
\begin{defn}{5.5} |
|
|
|
Let $L:K$, suppose $\alpha \in L$ is algebraic over $K$. Then, the \emph{minimal polynomial} of $\alpha$ over $K$ is the unique monic polynomial $m$ over $K$, $m(t) \in K[t]$, of smallest degree such that $m(\alpha)=0$. |
|
|
|
\\ |
|
|
|
eg.: $i \in \mathbb{C}$ is algebraic over $\mathbb{R}$. The minimal polynomial of $i$ over $\mathbb{R}$ is $m(t)=t^2 +1$, so that $m(i)=0$. |
|
|
|
\end{defn} |
|
|
|
|
|
|
|
\begin{lemma}{5.9} |
|
|
|
Every polynomial $a \in K[t]$ is congruent modulo $m$ to a unique polynomial of degree $< \delta m$. |
|
|
|
\end{lemma} |
|
|
|
\begin{proof} |
|
|
|
Divide $a / m$ with remainder, $a= qm +r$, with $q,r \in K[t]$ and $\delta r < \delta m$. |
|
|
|
Then, $a-r=qm$, so $a \equiv r \pmod{m}$. |
|
|
|
|
|
|
|
It remains to prove uniqueness. |
|
|
|
|
|
|
|
Suppose $\exists~ r \equiv s \pmod{m}$, with $\delta r, \delta s < \delta m$. |
|
|
|
Then, $r-s$ is divisible by $m$, but has smaller degree than $m$. |
|
|
|
|
|
|
|
Therefore, $r-s=0$, so $r=s$, proving uniqueness. |
|
|
|
\end{proof} |
|
|
|
|
|
|
|
\begin{lemma}{5.14} |
|
|
|
Let $K(\alpha):K$ be a simple algebraic extension, let $m$ be the minimal polynomial of $\alpha$ over $K$, let $\delta m =n$. |
|
|
|
|
|
|
|
Then $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ is a basis for $K(\alpha)$ over $K$. |
|
|
|
In particular, $[K(\alpha):K]=n$. |
|
|
|
\end{lemma} |
|
|
|
|
|
|
|
\begin{defn}{6.2} |
|
|
|
The degree $[L:K]$ of a field extension $L:K$ is the dimension of L considered as a vector space over $K$. |
|
|
|
|
|
|
|
Equivalently, the dimension of $L$ as a vector space over $K$ is the number of terms in the expression for a general element of $L$ using coefficients from $K$. |
|
|
|
\end{defn} |
|
|
|
|
|
|
|
\begin{eg}{6.3} |
|
|
|
\begin{enumerate} |
|
|
|
\item $\mathbb{C}$ elements are 2-dimensional over $\mathbb{R}$ ($p+qi \in \mathbb{C}$, with $p,q \in \mathbb{R}$), because a basis is $\{1, i\}$, hence $[\mathbb{C}:\mathbb{R}]=2$. |
|
|
|
\item $[ \mathbb{Q}(i, \sqrt{5}) : \mathbb{Q}]=4$, since the elements $\{1, \sqrt{5}, i, i\sqrt{5}\}$ form a basis for $\mathbb{Q}(i, \sqrt{5})$ over $\mathbb{Q}$. |
|
|
|
\end{enumerate} |
|
|
|
\end{eg} |
|
|
|
|
|
|
|
\begin{thm}{6.4}\emph{(Short Tower Law)} |
|
|
|
If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K]=[M:L]\cdot [L:K]$. |
|
|
|
\end{thm} |
|
|
|
\begin{proof} |
|
|
|
Let $(x_i)_{i \in I}$ be a basis for $L$ over $K$, |
|
|
|
let $(y_j)_{j \in J}$ be a basis for $M$ over $L$.\\ |
|
|
|
$\forall i \in I, j \in J$, we have $x_i \in L, u_j \in M$. |
|
|
|
\\ |
|
|
|
Want to show that $(x_i y_j)_{i\in I, j\in J}$ is a basis for $M$ over $K$. |
|
|
|
\begin{enumerate}[i.] |
|
|
|
\item prove linear independence:\\ |
|
|
|
Suppose that |
|
|
|
$$\sum_{ij} k_{ij} x_i y_j = 0 ~(k_{ij} \in K)$$ |
|
|
|
rearrange |
|
|
|
$$\sum_j (\underbrace{\sum_i k_{ij} x_i}_{\in L}) y_j = 0 ~(k_{ij} \in K)$$ |
|
|
|
Since $\sum_i k_{ij} x_i \in L$, and the $y_j \in M$ are linearly independent over $L$, then $\sum_i k_{ij} x_i = 0$. |
|
|
|
\\ |
|
|
|
Repeating the argument inside $L$ $\longrightarrow$ $k_{ij}=0 ~~\forall i\in I, j\in J$. |
|
|
|
\\ |
|
|
|
So the elements $x_i y_j$ are linearly independent over $K$. |
|
|
|
|
|
|
|
\item prove that $x_i y_j$ span $M$ over $K$:\\ |
|
|
|
Any $x \in M$ can be written $x=\sum_j \lambda_j y_j$ for $\lambda_j \in L$, because $y_j$ spans $M$ over $L$. |
|
|
|
Similarly, $\forall j\in J,~ \lambda_j = \sum_i \lambda_{ij} x_i y_j$ for $\lambda_{ij} \in K$.\\ |
|
|
|
Putting the pieces together, $x=\sum_{ij} \lambda_{ij} x_i y_j$ as required. |
|
|
|
\end{enumerate} |
|
|
|
\end{proof} |
|
|
|
|
|
|
|
\begin{cor}{6.6}\emph{(Tower Law)}\\ |
|
|
|
If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of $\mathbb{C}$, then |
|
|
|
$$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1: K_0]$$ |
|
|
|
\end{cor} |
|
|
|
|
|
|
|
\bibliographystyle{unsrt} |
|
|
|
\bibliography{galois-theory-notes.bib} |
|
|
|
|
|
|
|
\end{document} |