Browse Source

port notes on Noetherian rings&modules

commutative-alg
arnaucube 1 week ago
parent
commit
0213a1e14f
2 changed files with 109 additions and 14 deletions
  1. BIN
      commutative-algebra-notes.pdf
  2. +109
    -14
      commutative-algebra-notes.tex

BIN
commutative-algebra-notes.pdf


+ 109
- 14
commutative-algebra-notes.tex

@ -95,22 +95,22 @@
% WIP % WIP
\subsection{Lemmas, propositions and corollaries} \subsection{Lemmas, propositions and corollaries}
\begin{thm}{1.X}{Zorn's lemma} \label{zorn}
\begin{thm}{AM.1.X}{Zorn's lemma} \label{zorn}
TODO TODO
\end{thm} \end{thm}
\begin{thm}{1.3} \label{1.3}
\begin{thm}{AM.1.3} \label{1.3}
Every ring $A \neq 0$ has at lleast one maximal ideal. Every ring $A \neq 0$ has at lleast one maximal ideal.
\end{thm} \end{thm}
\begin{proof} \begin{proof}
By Zorn's lemma \ref{zorn}. By Zorn's lemma \ref{zorn}.
\end{proof} \end{proof}
\begin{cor}{1.4} \label{1.4}
\begin{cor}{AM.1.4} \label{1.4}
if $I \neq (1)$ an ideal of $A$, $\exists$ a maximal ideal of $A$ containing $I$. if $I \neq (1)$ an ideal of $A$, $\exists$ a maximal ideal of $A$ containing $I$.
\end{cor} \end{cor}
\begin{cor}{1.5} \label{1.5}
\begin{cor}{AM.1.5} \label{1.5}
Every non-unit of $A$ is contained in a maximal ideal. Every non-unit of $A$ is contained in a maximal ideal.
\end{cor} \end{cor}
@ -122,7 +122,7 @@
$Jac(A)$ is an ideal of $A$. $Jac(A)$ is an ideal of $A$.
\end{defn} \end{defn}
\begin{prop}{1.9} \label{1.9}
\begin{prop}{AM.1.9} \label{1.9}
$x \in Jac(A)$ iff $(1 - xy)$ is a unit in $A$, $\forall y \in A$. $x \in Jac(A)$ iff $(1 - xy)$ is a unit in $A$, $\forall y \in A$.
\end{prop} \end{prop}
\begin{proof} \begin{proof}
@ -146,9 +146,30 @@
\subsection{Modules} \subsection{Modules}
Let $A$ be a ring. An $A$-module is an Abelian group $M$ with a multiplication
map
\begin{align*}
A \times M &\longrightarrow M\\
(f, m) &\longmapsto fm
\end{align*}
satisfying $\forall~ f,g \in A,~~ m, n \in M$.
\begin{enumerate}[i.]
\item $f(m \pm n)=fm \pm fn$
\item $(f \pm g) m = fm \pm gm$
\item $(fg) m = f(gm)$
\item $1_A m = m$
\end{enumerate}
Let $\psi: M \longrightarrow M$ an $A$-linear endomorphism of $M$.\\
$A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi$.
\begin{itemize}
\item since $\psi$ is $A$-linear, $A[\psi]$ is a commutative ring.
\item $M$ is a module over $A[\psi]$, so $\psi$ beomes multiplication by a ring element.
\end{itemize}
\subsection{Cayley-Hamilton theorem, Nakayama lemma, and corollaries} \subsection{Cayley-Hamilton theorem, Nakayama lemma, and corollaries}
\begin{prop}{2.4}(Cayley-Hamilton Theorem) \label{2.4}
\begin{prop}{AM.2.4}(Cayley-Hamilton Theorem) \label{2.4}
Let $M$ a fingen $A$-module. Let $\aA$ an ideal of $A$, let $\psi$ an Let $M$ a fingen $A$-module. Let $\aA$ an ideal of $A$, let $\psi$ an
$A$-module endomorphism of $M$ such that $\psi(M) \subseteq \aA M$. $A$-module endomorphism of $M$ such that $\psi(M) \subseteq \aA M$.
@ -228,7 +249,7 @@
With the Kronecker delta, $\psi(x_i)$ can be expressed as With the Kronecker delta, $\psi(x_i)$ can be expressed as
$$\psi(x_i) = \sum_{j=1}^n \delta_{ij} \psi(x_j)$$ $$\psi(x_i) = \sum_{j=1}^n \delta_{ij} \psi(x_j)$$
so the previous matrix ccan be characterized as
so the previous matrix can be characterized as
$$\sum_{j=1}^n (\delta_{ij} \psi - a_{ij}) x_j = 0$$ $$\sum_{j=1}^n (\delta_{ij} \psi - a_{ij}) x_j = 0$$
The entries of the matrix are \emph{endomorphisms} (elements of the ring $A[\psi]$) The entries of the matrix are \emph{endomorphisms} (elements of the ring $A[\psi]$)
@ -278,7 +299,7 @@
\begin{cor}{2.5} \label{2.5}
\begin{cor}{AM.2.5} \label{2.5}
Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA M = M$. Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA M = M$.
Then, $\exists~ x \equiv 1 \pmod \aA$ such that $xM = 0$. Then, $\exists~ x \equiv 1 \pmod \aA$ such that $xM = 0$.
@ -310,7 +331,7 @@
\begin{prop}{2.6}{Nakayama's lemma} \label{2.6}
\begin{prop}{AM.2.6}{Nakayama's lemma} \label{2.6}
Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA \subseteq Jac(A)$. Let $M$ a fingen $A$-module, let $\aA$ an ideal of $A$ such that $\aA \subseteq Jac(A)$.
Then $\aA M = M$ implies $M=0$. Then $\aA M = M$ implies $M=0$.
@ -318,16 +339,16 @@
\begin{proof} \begin{proof}
By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv 1 \pmod {Jac(A)}$. (notice that at \ref{2.5} is $\pmod \aA$ but here we use $\pmod {Jac(A)}$, since we have $\aA \subseteq Jac(A)$). By \ref{2.5}: since $\aA M = M$, we have $x M =0$ for some $x \equiv 1 \pmod {Jac(A)}$. (notice that at \ref{2.5} is $\pmod \aA$ but here we use $\pmod {Jac(A)}$, since we have $\aA \subseteq Jac(A)$).
By \ref{1.9}, $x$ is a unit in $A$.
By \ref{1.9}, $x$ is a unit in $A$ (thus $x^{-1}\cdot x=1$).
Hence $M = x^{-1} \cdot \underbrace{x \cdot M}_{=0~ \text{(by \ref{2.5})}} = 0$.
Hence $M = x^{-1} \cdot \underbrace{x~ \cdot M}_{=0~ \text{(by \ref{2.5})}} = 0$.
Thus, if $\aA M = M$ then $M=0$. Thus, if $\aA M = M$ then $M=0$.
\end{proof} \end{proof}
\begin{cor}{2.7} \label{2.7}
\begin{cor}{AM.2.7} \label{2.7}
Let $M$ a fingen $A$-module, let $N \subseteq M$ a submodule of $M$, let $\aA \subseteq Jac(A)$ an ideal. Let $M$ a fingen $A$-module, let $N \subseteq M$ a submodule of $M$, let $\aA \subseteq Jac(A)$ an ideal.
Then $M = \aA M + N \stackrel{\text{implies}}{\Longrightarrow} M=N$. Then $M = \aA M + N \stackrel{\text{implies}}{\Longrightarrow} M=N$.
@ -404,7 +425,7 @@
\begin{prop}{2.8} \label{2.8}
\begin{prop}{AM.2.8} \label{2.8}
Let $x_i \forall i \in [n]$ be elements of $M$ whose images $\frac{M}{m M}$ from a basis of this vecctor space. Then the $x_i$ generate $M$. Let $x_i \forall i \in [n]$ be elements of $M$ whose images $\frac{M}{m M}$ from a basis of this vecctor space. Then the $x_i$ generate $M$.
\end{prop} \end{prop}
\begin{proof} \begin{proof}
@ -414,11 +435,85 @@
\end{proof} \end{proof}
\subsection{Noetherean rings}
\begin{prop}{AM.2.10} \label{2.10}
Split exact sequence. TODO
\end{prop}
\section{Noetherean rings}
\begin{defn}{}{Ascending Chain Condition}
A partially orddered set $\Sigma$ has the \emph{ascending chain condition} (a.c.c.) if every chain
$$s_1 \leq s_2 \leq \ldots \leq s_k \leq \ldots$$
eventually breaks off, that is, $s_k = s_{k+1} = \ldots$ for some $k$.
\end{defn}
$\Longrightarrow~ \Sigma$ has the a.c.c. iff every non-empty subset $S \subset \Sigma$ has a maximal element.\\
\hspace*{2em} if $\empty \neq S \subset \Sigma$ does not have a maximal element, choose $s_1 \in S$, and for each $s_k$, an element $s_{k+1}$ with $s_k < s_{k+1}$, thus contradicting the a.c.c.
\begin{defn}{R.3.2}{Noetherian ring}
Let $A$ a ring; 3 equivalent conditions:
\begin{enumerate}[i.]
\item the set $\Sigma$ of ideals of $A$ has the a.c.c.; in other words, every increasing chain of ideals
$$I_1 \subset I_2 \subset \ldots \subset I_k \subset \ldots$$
eventually stops, that is $I_k = I_{k+1}=\ldots$ for some $k$.
\item every nonempty set $S$ of iddeals has a maximal element
\item every iddeal $I \subset A$ is finitely generated
\end{enumerate}
If these conditions hold, then $A$ is \emph{Noetherian}.
\end{defn}
\begin{proof}
TODO
\end{proof}
\begin{defn}{R.3.4.D}{Noetherian modules}
An $A$-module $M$ is Noetherian if the submoles of $M$ have the a.c.c.,\\
that is, ay increasing chain
$$M_1 \subset M_2 \subset \ldots \subset M_k \subset \ldots$$
of submodules eventually stops.
\end{defn}
As in with rings, it is equivalent to say that
\begin{enumerate}[i.]
\item any nonempty set of modulesof $M$ has a maximal element
\item every submodule of $M$ is finite
\end{enumerate}
\begin{prop}{R.3.4.P}
Let $0 \longrightarrow L \xrightarrow{\ \alpha \ } M \xrightarrow{\ \beta \ } N \longrightarrow 0$ be a s.e.s. (split exact sequence, \ref{2.10}).
Then, $M$ is Noetherian $\Longleftrightarrow~ L$ and $N$ are Noetherian.
\end{prop}
\begin{proof}
$\Longrightarrow$: trivial, since ascending chains of submodules in $L$ and $N$ correspond one-to-one to certain chains in $M$.
$\Longleftarrow$: suppose $M_1 \subset M_2 \subset \ldots \subset M_k \subset \ldots$ is an increasing chain of submodules of $M$.
Then identifying $\alpha(L)$ with $L$ and taking intersection gives a chain
$$L \cap M_1 \subset L \cap M_2 \subset \ldots \subset L \cap M_k \subset \ldots$$
of submodules of $L$, and applying $\beta$ gives a chain
$$\beta(M_1) \subset \beta(M_2) \subset \ldots \beta(M_k) \subset \ldots$$
of submodules of $N$.
Each of these two chains eventually stop, by the assumption on $L$ and $N$, so that we only need to prove the following lemma which completes the proof.
\end{proof}
\begin{lemma}{R.3.4.L}
for submodules $M_1 \subset M_2 \subset M$,\\
$L \cap M_1 = L \cap M_2$ and $\beta(M_1) = \beta(M_2) ~\Longrightarrow~ M_1 = M_2$.
\end{lemma}
\begin{proof}
if $m\in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$.
Then $\beta(m-n)=0$, so that
$$m - n \in M_2 \cap ker(\beta)=M_1 \cap ker(\beta)$$
Hence $m \in M_1$, thus $M_1 = M_2$.
\end{proof}
\newpage
\section{Exercises} \section{Exercises}

Loading…
Cancel
Save