Browse Source

Noetherian rings: add ex. 3.2 & 3.5

comm-alg
arnaucube 4 days ago
parent
commit
0d3a56fec0
4 changed files with 80 additions and 2 deletions
  1. BIN
      commutative-algebra-notes.pdf
  2. +74
    -0
      commutative-algebra-notes.tex
  3. BIN
      galois-theory-notes.pdf
  4. +6
    -2
      galois-theory-notes.tex

BIN
commutative-algebra-notes.pdf


+ 74
- 0
commutative-algebra-notes.tex

@ -1158,7 +1158,81 @@ $0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\long
So, $L$ provides $k$ generators for the kernel part of $M$, $N$ provides $p$ "lifts" for the quotient part of $M$; thus $M$ is generated by $k+p$ elements.\\ So, $L$ provides $k$ generators for the kernel part of $M$, $N$ provides $p$ "lifts" for the quotient part of $M$; thus $M$ is generated by $k+p$ elements.\\
Thus $M$ is finitely generated over $A$. Thus $M$ is finitely generated over $A$.
\end{proof}
\subsection{Exercises Chapter 3}
\begin{ex}{R.3.2}
$K$ a field, $A \supset K$ a ring which is finite dimensional as a $K$-vector space.
Prove that $A$ is Noetherian and Artinian.
\end{ex}
\begin{proof}
$dim(A)=n < \infty$, so every ideal $\aA$ of $A$ is a $K$-subspace of $A$, because if $x \in \aA$ and $c \in K$, then $c \cdot x \in \aA$.
\begin{enumerate}
\item Noetherian:\\
let $I_1 \subseteq I_2 \subseteq \ldots$ be an ascending chain of ideals in $A$.
Since each $I_i$ is a subspace, we have
$$dim_K(I_1) \leq dim_K(I_2) \leq \ldots \leq n$$
where at some $i=m$ we have $dim_K(I_m)=dim_K(I_{m+1})$; then since $I_m \subseteq I_{m+1}$, we have $I_m = I_{m+1}$. So $A$ is Noetherian.
\item Artinian:\\
Similarly, if $I_1 \supseteq I_2 \supseteq \ldots$ a descending chain of ideals in $A$.
then
$$n \geq dim_K(I_1) \geq dim_K(I_2) \geq \ldots \geq 0$$
where at some $i=m$ we have $dim_K(I_m)=dim_K(I_{m+1})$; then since $I_m \subseteq I_{m+1}$, we have $I_m = I_{m+1}$. So $A$ is Artinian.
\end{enumerate}
\end{proof}
\begin{ex}{R.3.5}
Let $0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$ an exact sequence. Let $M_1, M_2 \subseteq M$ be submodules of $M$.
Prove if the following holds or not:
$$\beta(M_1)=\beta(M_2) ~\text{and}~ \alpha^{-1}(M_1)=\alpha^{-1}(M_2)~~\Longrightarrow~ M_1=M_2$$
\end{ex}
\begin{proof}
Counterexample showing that it does not hold:
Let $K$ a field, $M = K \oplus K~, L=K,~N=K$.
Set, for $l \in L,~ (m_1, m_2) \in M$,
\begin{align*}
\alpha:~ &l \longmapsto (l, 0)\\
\beta:~ &(m_1, m_2) \longmapsto m_2
\end{align*}
So we have
$$0 \longrightarrow K \stackrel{\alpha}{\longrightarrow} K^2 \stackrel{\beta}{\longrightarrow} K \longrightarrow 0$$
Then,
\begin{align*}
M_1 &= \{ (x, x) ~|~ x \in K\} ~~~~\sim\text{(diagonal line)} \\
M_2 &= \{ (0, x) ~|~ x \in K\} ~~~~\sim\text{(y-axis)}
\end{align*}
(Geometric interpretation: $M_1,~ M_2$ are the \emph{diagonal line} and \emph{y-axis} respectively; and $\alpha,~\beta$ capture information about the \emph{vertical} components (x-axis, y-axis respectively), but not about the \emph{diagonal} way a submodule is embedded in $M$).
Then,
\begin{align*}
\beta(M_1) &= \{ x ~|~ x \in K\} = K \\
\beta(M_2) &= \{ x ~|~ x \in K\} = K
\end{align*}
thus, $\beta(M_1) = \beta(M_2)$.
For $M_1,~~ (l,0)\in M$ iff $l=0$, thus $\alpha^{-1}(M_1) = \{0\}$,\\
for $M_2,~~ (l,0)\in M$ iff $l=0$, thus $\alpha^{-1}(M_2) = \{0\}$,\\
thus $\alpha^{-1}(M_1)=\alpha^{-1}(M_2)$.
So we've seen that
\begin{align*}
\beta(M_1) = \beta(M_2)\\
\alpha^{-1}(M_1)=\alpha^{-1}(M_2)
\end{align*}
while having $M_1 \neq M_2$.
\end{proof} \end{proof}
\bibliographystyle{unsrt} \bibliographystyle{unsrt}

BIN
galois-theory-notes.pdf


+ 6
- 2
galois-theory-notes.tex

@ -461,8 +461,12 @@
\begin{enumerate}[i.] \begin{enumerate}[i.]
\item show that $\eta$ is a \emph{well defined} map: \item show that $\eta$ is a \emph{well defined} map:
if $g_1 K=g_2 K$, then for some $k \in K$, $g_1 k =g_2$, so
$$\eta(g_1K)=\psi(g_1) = \psi(g_1)\psi(k) = \psi(g_1 k) = \psi(g_2) = \eta(g_2 k)$$
if we have two representatives of the same coset, ie. $g_1 K=g_2 K$, we want to show that $\eta(g_1 K) = \eta(g_2 K)$, so that $\eta$ is a well-defined map.
\vspace{0.3cm}
By the coset properties for some $k \in K$, $g_1=g_2 k$, so
$$\eta(g_1K)=\psi(g_1) = \psi(g_2 k) = \eta(g_2 k K) = \eta(g_2 K)$$
Thus, $\eta$ does not depend on the choice of coset representatives, and Thus, $\eta$ does not depend on the choice of coset representatives, and
the map $\eta: G/ker(\psi) \longrightarrow \psi(G)$ is uniquely defined the map $\eta: G/ker(\psi) \longrightarrow \psi(G)$ is uniquely defined

Loading…
Cancel
Save