@ -1158,7 +1158,81 @@ $0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\long
So, $L$ provides $k$ generators for the kernel part of $M$, $N$ provides $p$ "lifts" for the quotient part of $M$; thus $M$ is generated by $k+p$ elements.\\
So, $L$ provides $k$ generators for the kernel part of $M$, $N$ provides $p$ "lifts" for the quotient part of $M$; thus $M$ is generated by $k+p$ elements.\\
Thus $M$ is finitely generated over $A$.
Thus $M$ is finitely generated over $A$.
\end{proof}
\subsection{Exercises Chapter 3}
\begin{ex}{R.3.2}
$K$ a field, $A \supset K$ a ring which is finite dimensional as a $K$-vector space.
Prove that $A$ is Noetherian and Artinian.
\end{ex}
\begin{proof}
$dim(A)=n < \infty$, so every ideal $\aA$ of $A$ is a $K$-subspace of $A$, because if $x \in\aA$ and $c \in K$, then $c \cdot x \in\aA$.
\begin{enumerate}
\item Noetherian:\\
let $I_1\subseteq I_2\subseteq\ldots$ be an ascending chain of ideals in $A$.
Since each $I_i$ is a subspace, we have
$$dim_K(I_1)\leq dim_K(I_2)\leq\ldots\leq n$$
where at some $i=m$ we have $dim_K(I_m)=dim_K(I_{m+1})$; then since $I_m \subseteq I_{m+1}$, we have $I_m = I_{m+1}$. So $A$ is Noetherian.
\item Artinian:\\
Similarly, if $I_1\supseteq I_2\supseteq\ldots$ a descending chain of ideals in $A$.
where at some $i=m$ we have $dim_K(I_m)=dim_K(I_{m+1})$; then since $I_m \subseteq I_{m+1}$, we have $I_m = I_{m+1}$. So $A$ is Artinian.
\end{enumerate}
\end{proof}
\begin{ex}{R.3.5}
Let $0\longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow0$ an exact sequence. Let $M_1, M_2\subseteq M$ be submodules of $M$.
M_2 &= \{ (0, x) ~|~ x \in K\} ~~~~\sim\text{(y-axis)}
\end{align*}
(Geometric interpretation: $M_1,~ M_2$ are the \emph{diagonal line} and \emph{y-axis} respectively; and $\alpha,~\beta$ capture information about the \emph{vertical} components (x-axis, y-axis respectively), but not about the \emph{diagonal} way a submodule is embedded in $M$).
Then,
\begin{align*}
\beta(M_1) &= \{ x ~|~ x \in K\} = K \\
\beta(M_2) &= \{ x ~|~ x \in K\} = K
\end{align*}
thus, $\beta(M_1)=\beta(M_2)$.
For $M_1,~~ (l,0)\in M$ iff $l=0$, thus $\alpha^{-1}(M_1)=\{0\}$,\\
for $M_2,~~ (l,0)\in M$ iff $l=0$, thus $\alpha^{-1}(M_2)=\{0\}$,\\
if we have two representatives of the same coset, ie. $g_1 K=g_2 K$, we want to show that $\eta(g_1 K)=\eta(g_2 K)$, so that $\eta$ is a well-defined map.
\vspace{0.3cm}
By the coset properties for some $k \in K$, $g_1=g_2 k$, so
$$\eta(g_1K)=\psi(g_1)=\psi(g_2 k)=\eta(g_2 k K)=\eta(g_2 K)$$
Thus, $\eta$ does not depend on the choice of coset representatives, and
Thus, $\eta$ does not depend on the choice of coset representatives, and
the map $\eta: G/ker(\psi)\longrightarrow\psi(G)$ is uniquely defined
the map $\eta: G/ker(\psi)\longrightarrow\psi(G)$ is uniquely defined