Browse Source

port exercise R.2.9

comm-alg
arnaucube 5 days ago
parent
commit
7f29627348
3 changed files with 72 additions and 10 deletions
  1. +5
    -0
      .github/workflows/typos.toml
  2. BIN
      commutative-algebra-notes.pdf
  3. +67
    -10
      commutative-algebra-notes.tex

+ 5
- 0
.github/workflows/typos.toml

@ -1,4 +1,9 @@
[default.extend-words]
iddeal = "ideal"
iddeals = "ideals"
allpha = "alpha"
# strings that are not a typo:
thm = "thm"
# equations stuff

BIN
commutative-algebra-notes.pdf


+ 67
- 10
commutative-algebra-notes.tex

@ -178,7 +178,7 @@
$$A \supset \mM ~\text{or}~ (A, \mM) ~\text{or}~ (A, \mM, K)$$
\end{defn}
\subsection{$\mathbb{Z}$ and $K[X]$, two Principal Ideal Domains}
\subsection{Z and K[X], two Principal Ideal Domains}
\begin{lemma}{}
@ -696,6 +696,8 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\end{proof}
\subsection{Sequences}
\begin{defn}{R.2.9.a}{Exact Sequence}
Let a sequence of homomorphisms
$$L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N$$
@ -708,6 +710,14 @@ $ker(\beta)$.
\begin{defn}{R.2.9.b}{Short Exact Sequence (s.e.s.)} \label{2.9}
$$0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$$
is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
Properties:
\begin{itemize}
\item $\alpha$ injective
\item $\beta$ surjective
\item $\alpha:~ L \Longrightarrow ker \beta$
\item $\beta$ induces $M/\alpha(L) \longrightarrow N$
\end{itemize}
\end{defn}
\begin{prop}{R.2.10}{Split exact sequence} \label{2.10}
@ -720,16 +730,16 @@ is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
\end{align*}
\item $\exists$ a \emph{section} of $\beta$, that is, a map $s: N \longrightarrow M$ such that $\beta \circ s = id_N$
\item $\exists$ a \emph{retraction} of $\alpha$, that is, a map $r: M \longrightarrow L$ such that $r \circ \allpha = id_L$
\item $\exists$ a \emph{retraction} of $\alpha$, that is, a map $r: M \longrightarrow L$ such that $r \circ \alpha = id_L$
\end{enumerate}
If all i, ii, iii are satisfied, it is a split exact sequence.
\end{prop}
\begin{proof}
Intuitively, when a s.e.s. \emph{splits} it means that the middle module $M$ is the direct sum of the other (outter) two modules, ie. $M = L \oplus N$.
Intuitively, when a s.e.s. \emph{splits} it means that the middle module $M$ is the direct sum of the other (outer) two modules, ie. $M = L \oplus N$.
\begin{itemize}
\item[(i \Longrightarrow ii, iii)]
\item[(i to ii, iii)]
if $M \cong L \oplus N$ such that $\alpha:~ m \longmapsto (m,0),~~ \beta:~ s(m, n) \longmapsto n$, we can define the maps
for ii:
@ -748,7 +758,7 @@ is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
Then $r(\alpha(m))=r(m,0)$, so $r \circ \alpha = id_L$.
\item[(ii \Longrightarrow i)]
\item[(ii to i)]
assume $s: N \longrightarrow M$ such that $\beta \circ s = id_M$
Want to show $M \cong im(\alpha) \oplus im(s)$.
@ -773,7 +783,7 @@ is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
\end{align*}
This isomorphism satisfies the required conditions.
\item[(iii \Longrightarrow i)] similar to the previous one.
\item[(iii to i)] similar to the previous one.
\end{itemize}
\vspace{0.3cm}
@ -820,8 +830,8 @@ $\Longrightarrow~ \Sigma$ has the a.c.c. iff every non-empty subset $S \subset \
\item the set $\Sigma$ of ideals of $A$ has the a.c.c.; in other words, every increasing chain of ideals
$$I_1 \subset I_2 \subset \ldots \subset I_k \subset \ldots$$
eventually stops, that is $I_k = I_{k+1}=\ldots$ for some $k$.
\item every nonempty set $S$ of iddeals has a maximal element
\item every iddeal $I \subset A$ is finitely generated
\item every nonempty set $S$ of ideals has a maximal element
\item every ideal $I \subset A$ is finitely generated
\end{enumerate}
If these conditions hold, then $A$ is \emph{Noetherian}.
\end{defn}
@ -868,7 +878,7 @@ As in with rings, it is equivalent to say that
$$L \cap M_1 = L \cap M_2 ~\text{and}~ \beta(M_1) = \beta(M_2) ~\Longrightarrow~ M_1 = M_2$$
\end{lemma}
\begin{proof}
if $m\in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$.
if $m\in M_2$, then $\beta(m) \in \beta(M_1) = \beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(n)$.
Then $\beta(m-n)=0$, so that
$$m - n \in M_2 \cap ker(\beta)=M_1 \cap ker(\beta)$$
@ -916,7 +926,7 @@ The exercises that start with \textbf{R} are the ones from the book \cite{reid},
Let
$$\psi^{-1}(P) = \{ a \in A | \psi(a) \in P \} = A \cap P$$
The claim is that $\psi^{-1}(P)$ is prime iddeal of $A$.
The claim is that $\psi^{-1}(P)$ is prime ideal of $A$.
\begin{enumerate}[i.]
\item show that $\psi^{-1}(P)$ is an ideal of $A$:\\
@ -1104,6 +1114,53 @@ The exercises that start with \textbf{R} are the ones from the book \cite{reid},
\subsection{Exercises Chapter 2}
\begin{ex}{R.2.9}
$0 \longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow 0$ is a s.e.s. of $A$-modules. Prove that if $N, L$ are finite over $A$, then $M$ is finite over $A$.
\end{ex}
\begin{proof}
Denote the generators of $L$ and $N$ respectively as
\begin{align*}
\{l_1, \ldots, l_k \} &\subseteq L\\
\{n_1, \ldots, n_p \} &\subseteq N
\end{align*}
By s.e.s. definition,
\begin{itemize}
\item[-] $\alpha$ is injective (one-to-one), so
$$\forall l_i \in L,~ \exists~ x_i \in M ~\text{s.th.}~ \alpha(l_i)=x_i$$
\item[-] $\beta$ is surjective (onto), so
$$\forall n_j \in N,~ \exists~ y_j \in M ~\text{s.th.}~ \beta(y_j)=n_j$$
\end{itemize}
We will show that $\{x_1, \ldots, x_k, y_1, \ldots, y_p \}$ generate $M$, and thus $M$ is finite:
Let $m \in M$, then $\beta(m) \in N$, and
$$\beta(m) = \sum_{j=1}^p a_j n_j ~~~\text{with}~ a_j \in A$$
Take $m' \in M$, with $m' = \sum a_j y_j$, then
$$\beta(m') = \sum a_j \beta(y_j) = \sum a_j n_j = \beta(m)$$
Then, since $\beta(m)=\beta(m')~~ \Longrightarrow~~ \beta(m-m')=0$, thus
$$(m-m') \in ker(\beta)$$
By \emph{exactness} property, since $\alpha: L \longrightarrow ker(\beta)$, we have $ker(\beta)=im(\alpha)$.
Therefore, $\exists~ l \in L$ such that $\alpha(l)= m-m'$.
Since $\{l_i\}_k$ generate $L$,
$$l = \sum^k b_i l_i$$
thus
$$m-m' = \alpha(l) = \alpha(\underbrace{\sum b_i l_i}_{l}) = \sum b_i \underbrace{\alpha(l_i)}_{x_i} = \sum b_i x_i$$
Rearrange,
$$m = m' + \sum b_i x_i = \sum_{j=1}^p a_j y_j + \sum_{i=1}^k b_i x_i ~~~~~ \forall m \in M$$
So, $L$ provides $k$ generators for the kernel part of $M$, $N$ provides $p$ "lifts" for the quotient part of $M$; thus $M$ is generated by $k+p$ elements.\\
Thus $M$ is finitely generated over $A$.
\end{proof}
\bibliographystyle{unsrt}
\bibliography{commutative-algebra-notes.bib}

Loading…
Cancel
Save