\item$\exists$ isomorphism $M \cong L \oplus N$, with
\begin{align*}
\alpha:~ &m \longmapsto (m,0)\\
\beta:~ &(m, n) \longmapsto n
\end{align*}
\item$\exists$ a \emph{section} of $\beta$, that is, a map $s: N \longrightarrow M$ such that $\beta\circ s = id_N$
\item$\exists$ a \emph{retraction} of $\alpha$, that is, a map $r: M \longrightarrow L$ such that $r \circ\allpha= id_L$
\end{enumerate}
If all i, ii, iii are satisfied, it is a split exact sequence.
\end{prop}
\begin{proof}
Intuitively, when a s.e.s. \emph{splits} it means that the middle module $M$ is the direct sum of the other (outter) two modules, ie. $M = L \oplus N$.
\begin{itemize}
\item[(i \Longrightarrow ii, iii)]
if $M \cong L \oplus N$ such that $\alpha:~ m \longmapsto(m,0),~~ \beta:~ s(m, n)\longmapsto n$, we can define the maps
for ii:
\begin{align*}
s:~ N &\longrightarrow L \oplus N\\
s(n) &\longmapsto (0, n)
\end{align*}
Then $\beta(s(n))=\beta(0,n)$, so $\beta\circ s = id_N$.
for iii:
\begin{align*}
r:~ L \oplus N &\longrightarrow L\\
r(m,n) &\longmapsto m
\end{align*}
Then $r(\alpha(m))=r(m,0)$, so $r \circ\alpha= id_L$.
\item[(ii \Longrightarrow i)]
assume $s: N \longrightarrow M$ such that $\beta\circ s = id_M$
Want to show $M \cong im(\alpha)\oplus im(s)$.
$\forall m \in M$, consider $m - s(\beta(m))$, apply $\beta$ to it:\\