@ -0,0 +1,94 @@ |
|||
from hashlib import sha256 |
|||
|
|||
# Ring Signatures |
|||
# bLSAG: Back’s Linkable Spontaneous Anonymous Group signatures |
|||
|
|||
def hashToPoint(a): |
|||
# TODO use a proper hash-to-point |
|||
h = sha256((str(a)).encode('utf-8')) |
|||
r = int(h.hexdigest(), 16) * g |
|||
return r |
|||
|
|||
def hash(R, m, A, B, q): |
|||
h = sha256(( |
|||
str(R) + str(m) + str(A) + str(B) |
|||
).encode('utf-8')) |
|||
r = int(h.hexdigest(), 16) |
|||
return int(mod(r, q)) |
|||
|
|||
def print_ring(a): |
|||
print("ring of c's:") |
|||
for i in range(len(a)): |
|||
print(i, a[i]) |
|||
print("") |
|||
|
|||
class Prover(object): |
|||
def __init__(self, F, g): |
|||
self.F = F # Z_p |
|||
self.g = g # elliptic curve generator |
|||
self.q = self.g.order() # order of group |
|||
|
|||
def new_key(self): |
|||
self.w = int(self.F.random_element()) |
|||
self.K = self.g * self.w |
|||
return self.K |
|||
|
|||
def sign(self, m, R): |
|||
# determine pi (the position of signer's public key in R |
|||
pi = -1 |
|||
for i in range(len(R)): |
|||
if self.K == R[i]: |
|||
pi = i |
|||
break |
|||
assert pi>=0 |
|||
|
|||
a = int(self.F.random_element()) |
|||
r = [None] * len(R) |
|||
# for i \in {1, 2, ..., n} \ {i=pi} |
|||
for i in range(0, len(R)): |
|||
if i==pi: |
|||
continue |
|||
|
|||
r[i] = int(mod(int(self.F.random_element()), self.q)) |
|||
|
|||
c = [None] * len(R) |
|||
# c_{pi+1} |
|||
pi1 = mod(pi + 1, len(R)) |
|||
c[pi1] = hash(R, m, a * self.g, a * hashToPoint(R[pi]), self.q) |
|||
|
|||
key_image = self.w * hashToPoint(self.K) |
|||
|
|||
# do c_{i+1} from i=pi+1 to pi-1: |
|||
# for j in range(0, len(R)-1): |
|||
for j in range(0, len(R)-1): |
|||
i = mod(pi1+j, len(R)) |
|||
i1 = mod(pi1+j +1, len(R)) |
|||
|
|||
c[i1] = hash(R, m, r[i] * self.g + c[i] * R[i], r[i] * hashToPoint(R[i]) + c[i] * key_image, self.q) |
|||
|
|||
# compute r_pi |
|||
r[pi] = int(mod(a - c[pi] * self.w, self.q)) |
|||
print_ring(c) |
|||
|
|||
return [c[0], r] |
|||
|
|||
def verify(g, R, m, key_image, sig): |
|||
q = g.order() |
|||
c1 = sig[0] |
|||
r = sig[1] |
|||
assert len(R) == len(r) |
|||
|
|||
# check that key_image \in G (EC), by l * key_image == 0 |
|||
assert q * key_image == 0 # in sage 0 EC point is interpreted as (0:1:0) |
|||
|
|||
|
|||
# for i \in 1,2,...,n |
|||
c = [None] * len(R) |
|||
c[0] = c1 |
|||
for j in range(0, len(R)): |
|||
i = mod(j, len(R)) |
|||
i1 = mod(j+1, len(R)) |
|||
c[i1] = hash(R, m, r[i] * g + c[i] * R[i], r[i] * hashToPoint(R[i]) + c[i] * key_image, q) |
|||
|
|||
print_ring(c) |
|||
assert c1 == c[0] |
@ -0,0 +1,53 @@ |
|||
import unittest, operator |
|||
load("ring-signatures.sage") |
|||
|
|||
# ethereum elliptic curve |
|||
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F |
|||
a = 0 |
|||
b = 7 |
|||
F = GF(p) |
|||
E = EllipticCurve(F, [a,b]) |
|||
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 |
|||
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 |
|||
g = E(GX,GY) |
|||
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 |
|||
h = 1 |
|||
q = g.order() |
|||
assert is_prime(p) |
|||
assert is_prime(q) |
|||
assert g * q == 0 |
|||
|
|||
|
|||
class TestRingSignatures(unittest.TestCase): |
|||
def test_blSAG_ring_of_5(self): |
|||
test_blSAG(5, 3) |
|||
def test_blSAG_ring_of_20(self): |
|||
test_blSAG(20, 14) |
|||
|
|||
def test_blSAG(ring_size, pi): |
|||
print(f"[blSAG] Testing with a ring of {ring_size} keys") |
|||
prover = Prover(F, g) |
|||
n = ring_size |
|||
R = [None] * n |
|||
|
|||
# generate prover's key pair |
|||
K_pi = prover.new_key() |
|||
|
|||
# generate other n public keys |
|||
for i in range(0, n): |
|||
R[i] = g * i |
|||
|
|||
# set K_pi |
|||
R[pi] = K_pi |
|||
|
|||
# sign m |
|||
m = 1234 |
|||
print("sign") |
|||
sig = prover.sign(m, R) |
|||
|
|||
print("verify") |
|||
key_image = prover.w * hashToPoint(prover.K) |
|||
verify(g, R, m, key_image, sig) |
|||
|
|||
if __name__ == '__main__': |
|||
unittest.main() |
@ -1,5 +1,8 @@ |
|||
from hashlib import sha256 |
|||
|
|||
# Implementation of Sigma protocol & OR proofs |
|||
|
|||
|
|||
def hash_two_points(a, b): |
|||
h = sha256((str(a)+str(b)).encode('utf-8')) |
|||
return int(h.hexdigest(), 16) |
@ -1,5 +1,7 @@ |
|||
import unittest, operator |
|||
load("crypto.sage") |
|||
load("sigma.sage") |
|||
|
|||
# Tests for Sigma protocol & OR proofs |
|||
|
|||
|
|||
# ethereum elliptic curve |