mirror of
https://github.com/arnaucube/math.git
synced 2026-01-11 16:31:32 +01:00
Add ring signatures sage implementation (bLSAG)
This commit is contained in:
213
sigma.sage
Normal file
213
sigma.sage
Normal file
@@ -0,0 +1,213 @@
|
||||
from hashlib import sha256
|
||||
|
||||
# Implementation of Sigma protocol & OR proofs
|
||||
|
||||
|
||||
def hash_two_points(a, b):
|
||||
h = sha256((str(a)+str(b)).encode('utf-8'))
|
||||
return int(h.hexdigest(), 16)
|
||||
|
||||
def generic_verify(g, X, A, c, z):
|
||||
return g * int(z) == X * int(c) + A
|
||||
|
||||
###
|
||||
# Sigma protocol interactive
|
||||
###
|
||||
|
||||
class Prover_interactive(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F # Z_p
|
||||
self.g = g # elliptic curve generator
|
||||
|
||||
def new_key(self):
|
||||
self.w = self.F.random_element()
|
||||
X = self.g * int(self.w)
|
||||
return X
|
||||
|
||||
def new_commitment(self):
|
||||
self.a = self.F.random_element()
|
||||
A = self.g * int(self.a)
|
||||
return A
|
||||
|
||||
def gen_proof(self, c):
|
||||
return int(self.a) + int(c) * int(self.w)
|
||||
|
||||
class Verifier_interactive(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F
|
||||
self.g = g
|
||||
|
||||
def new_challenge(self, A):
|
||||
self.A = A
|
||||
self.c = self.F.random_element()
|
||||
return self.c
|
||||
|
||||
def verify(self, X, z):
|
||||
return self.g * int(z) == X * int(self.c) + self.A
|
||||
|
||||
|
||||
###
|
||||
# Sigma protocol non-interactive
|
||||
###
|
||||
class Prover(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F # Z_p
|
||||
self.g = g # elliptic curve generator
|
||||
|
||||
def new_key(self):
|
||||
self.w = self.F.random_element()
|
||||
X = self.g * int(self.w)
|
||||
return X
|
||||
|
||||
def gen_proof(self, X):
|
||||
a = self.F.random_element()
|
||||
A = self.g * int(a)
|
||||
c = hash_two_points(A, X)
|
||||
z = int(a) + c * int(self.w)
|
||||
return A, z
|
||||
|
||||
|
||||
class Verifier(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F
|
||||
self.g = g
|
||||
|
||||
def verify(self, X, A, z):
|
||||
c = hash_two_points(A, X)
|
||||
return self.g * int(z) == X * c + A
|
||||
|
||||
class Simulator(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F
|
||||
self.g = g
|
||||
|
||||
def simulate(self, X):
|
||||
c = self.F.random_element()
|
||||
z = self.F.random_element()
|
||||
# A = g * int(z) + X*(-int(c))
|
||||
A = g * int(z) - X * int(c)
|
||||
return A, c, z
|
||||
|
||||
###
|
||||
# OR proof (with 2 parties)
|
||||
###
|
||||
|
||||
class ORProver_2parties(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F # Z_p
|
||||
self.g = g # elliptic curve generator
|
||||
|
||||
def new_key(self):
|
||||
self.w = self.F.random_element()
|
||||
X = self.g * int(self.w)
|
||||
return X
|
||||
|
||||
def gen_commitments(self, xs):
|
||||
# gen commitment A
|
||||
self.a = self.F.random_element()
|
||||
A = self.g * int(self.a)
|
||||
|
||||
# run the simulator for 1-b
|
||||
sim = Simulator(self.F, self.g)
|
||||
A_1, c_1, z_1 = sim.simulate(xs[1])
|
||||
|
||||
self.A_1 = A_1
|
||||
self.c_1 = c_1
|
||||
self.z_1 = z_1
|
||||
|
||||
return [A, A_1]
|
||||
|
||||
def gen_proof(self, s):
|
||||
# split the challenge s = c xor c_1
|
||||
c = int(s) ^^ int(self.c_1)
|
||||
# compute z
|
||||
z = int(self.a) + int(c) * int(self.w)
|
||||
# note, here the order of the returned elements is always the same, in
|
||||
# a real-world implementation would be shuffled
|
||||
return [c, self.c_1], [z, self.z_1]
|
||||
|
||||
class ORVerifier_2parties(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F
|
||||
self.g = g
|
||||
|
||||
def new_challenge(self, As):
|
||||
self.As = As
|
||||
self.s = self.F.random_element()
|
||||
return self.s
|
||||
|
||||
def verify(self, Xs, cs, zs):
|
||||
assert self.s == int(cs[0]) ^^ int(cs[1])
|
||||
assert self.g * int(zs[0]) == Xs[0] * int(cs[0]) + self.As[0]
|
||||
assert self.g * int(zs[1]) == Xs[1] * int(cs[1]) + self.As[1]
|
||||
|
||||
###
|
||||
# OR proof (with n parties)
|
||||
###
|
||||
|
||||
class ORProver(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F # Z_p
|
||||
self.g = g # elliptic curve generator
|
||||
|
||||
def new_key(self):
|
||||
self.w = self.F.random_element()
|
||||
X = self.g * int(self.w)
|
||||
return X
|
||||
|
||||
def gen_commitments(self, xs):
|
||||
# gen commitment A
|
||||
self.a = self.F.random_element()
|
||||
A = self.g * int(self.a)
|
||||
self.As = [A]
|
||||
|
||||
|
||||
# run the simulator for the rest of Xs
|
||||
sim = Simulator(self.F, self.g)
|
||||
self.cs = []
|
||||
self.zs = []
|
||||
for i in range(1, len(xs)):
|
||||
A_1, c_1, z_1 = sim.simulate(xs[i])
|
||||
self.As.append(A_1)
|
||||
self.cs.append(c_1)
|
||||
self.zs.append(z_1)
|
||||
|
||||
return self.As
|
||||
|
||||
def gen_proof(self, s):
|
||||
# split the challenge s = c xor c_1 xor c_2 xor ... xor c_n
|
||||
c = int(s)
|
||||
for i in range(len(self.cs)):
|
||||
c = c ^^ int(self.cs[i])
|
||||
|
||||
self.cs.insert(0, c) # add c at the beginning of cs array
|
||||
|
||||
# compute z
|
||||
z = int(self.a) + int(c) * int(self.w)
|
||||
self.zs.insert(0, z) # add z at the beginning of zs array
|
||||
|
||||
# note, here the order of the returned elements is always the same, in
|
||||
# a real-world implementation would be shuffled
|
||||
return self.cs, self.zs
|
||||
|
||||
class ORVerifier(object):
|
||||
def __init__(self, F, g):
|
||||
self.F = F
|
||||
self.g = g
|
||||
|
||||
def new_challenge(self, As):
|
||||
self.As = As
|
||||
self.s = self.F.random_element()
|
||||
return self.s
|
||||
|
||||
def verify(self, Xs, cs, zs):
|
||||
# check s == c_0 xor c_1 xor c_2 xor ... xor c_n
|
||||
computed_s = int(cs[0])
|
||||
for i in range(1, len(cs)):
|
||||
computed_s = computed_s ^^ int(cs[i])
|
||||
|
||||
assert self.s == computed_s
|
||||
|
||||
# check g*z == X*c + A (in multiplicative notation would g^z ==X^c * A)
|
||||
for i in range(len(Xs)):
|
||||
assert self.g * int(zs[i]) == Xs[i] * int(cs[i]) + self.As[i]
|
||||
Reference in New Issue
Block a user