mirror of
https://github.com/arnaucube/math.git
synced 2026-01-11 16:31:32 +01:00
Add BLS signatures on bls12-381
This commit is contained in:
63
bls-sigs.sage
Normal file
63
bls-sigs.sage
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
# toy implementation of BLS signatures
|
||||||
|
|
||||||
|
load("bls12-381.sage")
|
||||||
|
from hashlib import sha256
|
||||||
|
|
||||||
|
def hash(m):
|
||||||
|
h_output = sha256(str(m).encode('utf-8'))
|
||||||
|
return int(h_output.hexdigest(), 16)
|
||||||
|
|
||||||
|
def hash_to_point(m):
|
||||||
|
# WARNING this hash-to-point approach should not be used!
|
||||||
|
h = hash(m)
|
||||||
|
return G2 * h
|
||||||
|
|
||||||
|
|
||||||
|
pairing = Pairing()
|
||||||
|
|
||||||
|
class Signer:
|
||||||
|
def __init__(self):
|
||||||
|
self.sk = F1.random_element()
|
||||||
|
self.pk = self.sk * G1
|
||||||
|
|
||||||
|
def sign(self, m):
|
||||||
|
H = hash_to_point(m)
|
||||||
|
return self.sk * H
|
||||||
|
|
||||||
|
def verify(pk, s, m):
|
||||||
|
H = hash_to_point(m)
|
||||||
|
return pairing.pair(G1, s) == pairing.pair(pk, H)
|
||||||
|
|
||||||
|
def aggr(points):
|
||||||
|
R = 0
|
||||||
|
for i in range(len(points)):
|
||||||
|
R = R + points[i]
|
||||||
|
return R
|
||||||
|
|
||||||
|
|
||||||
|
m = 1234
|
||||||
|
|
||||||
|
# single signature & verification
|
||||||
|
user0 = Signer()
|
||||||
|
s = user0.sign(m)
|
||||||
|
v = verify(user0.pk, s, m)
|
||||||
|
assert v
|
||||||
|
|
||||||
|
|
||||||
|
# BLS signature aggregation
|
||||||
|
n = 10
|
||||||
|
users = [None]*n
|
||||||
|
pks = [None]*n
|
||||||
|
sigs = [None]*n
|
||||||
|
for i in range(n):
|
||||||
|
users[i] = Signer()
|
||||||
|
pks[i] = users[i].pk
|
||||||
|
sigs[i] = users[i].sign(m)
|
||||||
|
|
||||||
|
# aggregate sigs & pks
|
||||||
|
s_aggr = aggr(sigs)
|
||||||
|
pk_aggr = aggr(pks)
|
||||||
|
|
||||||
|
# verify aggregated signature
|
||||||
|
v = verify(pk_aggr, s_aggr, m)
|
||||||
|
assert v
|
||||||
63
bls12-381.sage
Normal file
63
bls12-381.sage
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
# The code of this file has been adapted from:
|
||||||
|
# https://github.com/osirislab/CSAW-CTF-2021-Finals/blob/main/crypto/aBoLiSh_taBLeS/chal.sage
|
||||||
|
#
|
||||||
|
# ## Example of usage:
|
||||||
|
# load("bls12-381.sage")
|
||||||
|
# pairing = Pairing()
|
||||||
|
# assert pairing.pair(G1 * 3, G2 * 2) == pairing.pair(G1, G2)^6
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# BLS12-381 Parameters
|
||||||
|
# https://github.com/zkcrypto/bls12_381
|
||||||
|
p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab
|
||||||
|
r = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
|
||||||
|
h1 = 0x396c8c005555e1568c00aaab0000aaab
|
||||||
|
h2 = 0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5
|
||||||
|
|
||||||
|
# Define base fields
|
||||||
|
F1 = GF(p)
|
||||||
|
F2.<u> = GF(p^2, x, x^2 + 1)
|
||||||
|
F12.<w> = GF(p^12, x, x^12 - 2*x^6 + 2)
|
||||||
|
|
||||||
|
# Define the Elliptic Curves
|
||||||
|
E1 = EllipticCurve(F1, [0, 4])
|
||||||
|
E2 = EllipticCurve(F2, [0, 4*(1 + u)])
|
||||||
|
E12 = EllipticCurve(F12, [0, 4])
|
||||||
|
|
||||||
|
# Generator of order r in E1 / F1
|
||||||
|
G1x = 0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb
|
||||||
|
G1y = 0x8b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1
|
||||||
|
G1 = E1(G1x, G1y)
|
||||||
|
|
||||||
|
# Generator of order r in E2 / F2
|
||||||
|
G2x0 = 0x24aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8
|
||||||
|
G2x1 = 0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e
|
||||||
|
G2y0 = 0xce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801
|
||||||
|
G2y1 = 0x606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be
|
||||||
|
G2 = E2(G2x0 + u*G2x1, G2y0 + u*G2y1)
|
||||||
|
|
||||||
|
|
||||||
|
class Pairing():
|
||||||
|
def lift_E1_to_E12(self, P):
|
||||||
|
"""
|
||||||
|
Lift point on E/F_q to E/F_{q^12} using the natural lift
|
||||||
|
"""
|
||||||
|
assert P.curve() == E1, "Attempting to lift a point from the wrong curve."
|
||||||
|
return E12(P)
|
||||||
|
|
||||||
|
def lift_E2_to_E12(self, P):
|
||||||
|
"""
|
||||||
|
Lift point on E/F_{q^2} to E/F_{q_12} through the sextic twist
|
||||||
|
"""
|
||||||
|
assert P.curve() == E2, "Attempting to lift a point from the wrong curve."
|
||||||
|
xs, ys = [c.polynomial().coefficients() for c in (h2*P).xy()]
|
||||||
|
nx = F12(xs[0] - xs[1] + w ^ 6*xs[1])
|
||||||
|
ny = F12(ys[0] - ys[1] + w ^ 6*ys[1])
|
||||||
|
return E12(nx / (w ^ 2), ny / (w ^ 3))
|
||||||
|
|
||||||
|
def pair(self, A, B):
|
||||||
|
A = self.lift_E1_to_E12(A)
|
||||||
|
B = self.lift_E2_to_E12(B)
|
||||||
|
return A.ate_pairing(B, r, 12, E12.trace_of_frobenius())
|
||||||
|
|
||||||
Reference in New Issue
Block a user