mirror of
https://github.com/arnaucube/math.git
synced 2026-01-10 16:01:31 +01:00
extend Galois Theory notes: add various 'tools'(useful theorems that don't appear in the book), add t^6-7\in Q example
This commit is contained in:
20
README.md
20
README.md
@@ -2,19 +2,31 @@
|
||||
|
||||
Notes, code and documents done while reading books and papers.
|
||||
|
||||
## mathematics
|
||||
|
||||
- [Notes on "Abstract Algebra" book, by Charles C. Pinter](abstract-algebra-charles-pinter-notes.pdf)
|
||||
- [Notes on Caulk & Caulk+ papers](notes_caulk.pdf)
|
||||
- [Notes on Weil pairing](weil-pairing.pdf)
|
||||
- [Notes on Galois Theory](galois-theory-notes.pdf)
|
||||
|
||||
|
||||
In-between math & crypto:
|
||||
|
||||
- [Notes on the DFT & FFT](fft-notes.pdf)
|
||||
- [Notes on NTT](notes_ntt.pdf)
|
||||
- [Notes on Reed-Solomon codes](notes_reed-solomon.pdf)
|
||||
|
||||
## cryptography
|
||||
|
||||
- [Notes on Caulk & Caulk+ papers](notes_caulk.pdf)
|
||||
- [Notes on the BLS signatures](notes_bls-sig.pdf)
|
||||
- [Notes on IPA from Halo paper](notes_halo.pdf)
|
||||
- [Notes on Sonic paper](notes_sonic.pdf)
|
||||
- [Notes on Weil pairing](weil-pairing.pdf)
|
||||
- [Notes on Sigma protocol and OR proofs](sigma-or-notes.pdf)
|
||||
- [Notes on Reed-Solomon codes](notes_reed-solomon.pdf)
|
||||
- [Notes on FRI and STIR](notes_fri_stir.pdf)
|
||||
- [Notes on Spartan](notes_spartan.pdf)
|
||||
- [Notes on Nova](notes_nova.pdf)
|
||||
- [Notes on HyperNova](notes_hypernova.pdf)
|
||||
- [Notes on NTT](notes_ntt.pdf)
|
||||
|
||||
## code
|
||||
Also some Sage implementations can be found in the `*.sage` files of this repo.
|
||||
Also some of the algorithms and schemes can be found implemented (mostly in Rust language) in various repositories of the github https://github.com/arnaucube .
|
||||
|
||||
Binary file not shown.
@@ -5,6 +5,7 @@
|
||||
\usepackage{amsmath}
|
||||
\usepackage{enumerate}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{amssymb}
|
||||
|
||||
\begin{filecontents}[overwrite]{galois-theory-notes.bib}
|
||||
@misc{ianstewart,
|
||||
@@ -12,6 +13,14 @@
|
||||
title = {{Galois Theory, Third Edition}},
|
||||
year = {2004}
|
||||
}
|
||||
|
||||
@misc{dihedral,
|
||||
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty}
|
||||
title = {Subgroups and normal subgroups of dihedral group up to isomorphism}
|
||||
year = {2010},
|
||||
note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}},
|
||||
url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}
|
||||
}
|
||||
\end{filecontents}
|
||||
\nocite{*}
|
||||
|
||||
@@ -46,7 +55,7 @@
|
||||
|
||||
\title{Galois Theory notes}
|
||||
\author{arnaucube}
|
||||
\date{2023-2024}
|
||||
\date{2025}
|
||||
|
||||
\begin{document}
|
||||
|
||||
@@ -63,6 +72,7 @@
|
||||
\tableofcontents
|
||||
|
||||
\section{Recap on the degree of field extensions}
|
||||
(Definitions, theorems, lemmas, corollaries and examples enumeration follows from Ian Stewart's book \cite{ianstewart}).
|
||||
|
||||
\begin{defn}{4.10}
|
||||
A \emph{simple extension} is $L:K$ such that $L=K(\alpha)$ for some $\alpha \in L$.
|
||||
@@ -112,7 +122,7 @@
|
||||
\end{enumerate}
|
||||
\end{eg}
|
||||
|
||||
\begin{thm}{6.4}\emph{(Short Tower Law)}
|
||||
\begin{thm}{6.4}\emph{(Short Tower Law)} \label{shorttowerlaw}
|
||||
If $K, L, M \subseteq \mathbb{C}$, and $K \subseteq L \subseteq M$, then $[M:K]=[M:L]\cdot [L:K]$.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
@@ -140,10 +150,279 @@
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
|
||||
\begin{cor}{6.6}\emph{(Tower Law)}\\
|
||||
\begin{cor}{6.6}\emph{(Tower Law)}\\ \label{towerlaw}
|
||||
If $K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ are subfields of $\mathbb{C}$, then
|
||||
$$[K_n:K_0] = [K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \ldots \cdot [K_1: K_0]$$
|
||||
\end{cor}
|
||||
\begin{proof}
|
||||
From \ref{shorttowerlaw}.
|
||||
\end{proof}
|
||||
|
||||
[...]
|
||||
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Tools}
|
||||
This section contains tools that I found useful to solve Galois Theory related problems, and that don't appear in Stewart's book.
|
||||
|
||||
\subsection{De Moivre's Theorem and Euler's formula}\label{demoivre}
|
||||
Useful for finding all the roots of a polynomial.
|
||||
|
||||
Euler's formula:
|
||||
$$e^{i \psi} = cos \psi + i \cdot sin \psi$$
|
||||
|
||||
The n-th roots of a complex number $z=x + i y = r (cos \theta + i \cdot sin \theta)$ are given by
|
||||
|
||||
$$z_k = \sqrt[n]{r} \cdot \left(cos(\frac{\theta + 2k \pi}{n}) + i \cdot sin(\frac{\theta + 2k \pi}{n}) \right)$$
|
||||
for $k=0, \ldots, n-1$.
|
||||
|
||||
So, by Euler's formula:
|
||||
$$z_k = \sqrt[n]{r} \cdot e^{i (\frac{\theta + 2 k \pi}{n})}$$
|
||||
|
||||
\subsection{Einsenstein's Criterion} \label{einsenstein}
|
||||
\emph{reference: Stewart's book}
|
||||
|
||||
Let $f(t) = a_0 + a_1 t + \ldots + a_n t^n$, suppose there is a prime $q$ such that
|
||||
\begin{enumerate}
|
||||
\item $q \nmid a_n$
|
||||
\item $q | a_i$ for $i=0, \ldots, n-1$
|
||||
\item $q^2 \nmid a_0$
|
||||
\end{enumerate}
|
||||
Then, $f$ is irreducible over $\mathbb{Q}$.
|
||||
|
||||
\emph{TODO proof \& Gauss lemma.}
|
||||
|
||||
|
||||
\subsection{Elementary symmetric polynomials}
|
||||
\emph{TODO from orange notebook, page 36}
|
||||
|
||||
\subsection{Cyclotomic polynomials} \label{cyclotomicpoly}
|
||||
\emph{TODO theory from brown muji notebook, page 82}
|
||||
|
||||
Examples:
|
||||
|
||||
\begin{align*}
|
||||
\Phi_n(x) &= x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i\\
|
||||
\Phi_{2p}(x) &= x^{p-1} + \ldots + x^2 - x + 1 = \sum_{i=0}^{p-1} (-x)^i\\
|
||||
\Phi_m(x) &= x^{m/2} + 1, ~~\text{when $m$ is a power of $2$}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\subsection{Lemma 1.42 from J.S.Milne's book}
|
||||
\emph{TODO add reference to Milne's book}
|
||||
|
||||
Useful for when dealing with $x^p - 1$ with $p$ prime.
|
||||
|
||||
Observe that
|
||||
|
||||
$$x^p -1 = (x-1)(x^{p-1} + x^{p-2} + \ldots + 1)$$
|
||||
|
||||
Notice that
|
||||
$$\Phi_p(x) = x^{p-1} + x^{p-2} + \ldots + 1$$
|
||||
is the $p$-th Cyclotomic polynomial.
|
||||
|
||||
\begin{lemma}{1.42}
|
||||
If $p$ prime, then $x^{p-1} + \ldots + 1$ is irreducible; hence $\mathbb{Q}[e^{2 \pi i /p}]$ has degree $p-1$ over $\mathbb{Q}$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Let $f(x) = (x^p - 1)/(x-1) = x^{p-1} + \ldots + 1$
|
||||
then
|
||||
$$
|
||||
f(x+1) = \frac{(x+1)^p -1}{x+1-1} = \frac{(x+1)^p -1}{x} = x^{p-1} + \ldots + a_i x^i + \ldots + p
|
||||
$$
|
||||
|
||||
with $a_i = \left( \stackrel{p}{i+1} \right)$.
|
||||
|
||||
We know that $p | a_i$ for $i= 1, \ldots, p-2$, therefore $f(x+1)$ is irreducibe by Einsenstein's Criterion.
|
||||
|
||||
This implies that $f(x)$ is irreducible.
|
||||
\end{proof}
|
||||
|
||||
|
||||
\subsection{Dihedral groups - Groups of symmetries} \label{dihedral}
|
||||
Source: Wikipedia and \cite{dihedral}.
|
||||
|
||||
Dihedral groups ($\mathbb{D}_n$) represent the symmetries of a regular $n$-gon.
|
||||
|
||||
Properties:
|
||||
\begin{itemize}
|
||||
\item are non-abelian (for $n>2$), ie. $rs \neq sr$
|
||||
\item order $2n$
|
||||
\item generated by a rotation $r$ and a reflextion $s$
|
||||
\item $r^n = s^2 = id,~~~(rs)^2=id$
|
||||
\end{itemize}
|
||||
Subgroups of $\mathbb{D}_n$:
|
||||
\begin{itemize}
|
||||
\item rotation form a cyclic subgroup of order $n$, denoted as $<r>$
|
||||
\item for each $d$ such that $d|n$, $\exists~ \mathbb{D}_d$ with order $2d$
|
||||
\item normal subgroups
|
||||
\begin{itemize}
|
||||
\item for $n$ odd: $\mathbb{D}_n$ and $<r^d>$ for every $d|n$
|
||||
\item for $n$ even: $2$ additional normal subgroups
|
||||
\end{itemize}
|
||||
\item Klein four-groups: $\mathbb{Z}_2 \times \mathbb{Z}_2$, of order 4
|
||||
\end{itemize}
|
||||
|
||||
\vspace{0.3cm}
|
||||
Total number of subgroups in $\mathbb{D}_n$: $d(n) + s(n)$, where $d(n)$ is the number of positive disivors of $n$, and $s(n)$ is the sum of those divisors.
|
||||
|
||||
\begin{eg}{}
|
||||
For $\mathbb{D}_6$, we have $\{1,2,3,6\} | 6$, so $d(n) = d(6) = 4$, and
|
||||
$s(6) = 1+2+3+6 = 12$; henceforth, the total amount of subgroups is $d(n)+s(n) = 4+12 = 16$.
|
||||
\end{eg}
|
||||
|
||||
\vspace{0.3cm}
|
||||
For $n \geq 3, ~~\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry group).
|
||||
|
||||
|
||||
|
||||
\newpage
|
||||
|
||||
\section{Exercises}
|
||||
|
||||
\subsection{Galois groups}
|
||||
|
||||
\subsubsection[t6-7]{$t^6-7 \in \mathbb{Q}$}
|
||||
|
||||
This exercise comes from a combination of exercises 12.4 and 13.7 from \cite{ianstewart}.
|
||||
|
||||
First let's find the roots. By De Moivre's Theorem (\ref{demoivre}), $t_k =
|
||||
\sqrt[6]{7} \cdot e^{i \frac{2 \pi k}{6}}$.
|
||||
|
||||
From which we denote $\alpha = \sqrt[6]{7}$, and $\zeta = e^{\frac{2 \pi i}{6}}$, so that the
|
||||
roots of the polynomial are $\{ \alpha, \alpha \zeta, \alpha \zeta^2, \alpha \zeta^3, \alpha \zeta^4, \alpha \zeta^5\}$, ie.
|
||||
$\{ \alpha \zeta^k \}_0^5$.
|
||||
|
||||
Hence the \emph{splitting field} is $\mathbb{Q}(\alpha, \zeta)$.
|
||||
|
||||
\emph{Degree of the extension}
|
||||
|
||||
In order to find $[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}$, we're going to split it in tow
|
||||
parts. By the Tower Law (\ref{towerlaw}),
|
||||
|
||||
$$[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha) : \mathbb{Q}]$$
|
||||
|
||||
To find each degree, we will find the minimal polynomial of the adjoined term over the base field of the extension:
|
||||
|
||||
\begin{enumerate}[i.]
|
||||
\item minimal polynomial of $\alpha$ over $\mathbb{Q}$\\
|
||||
By Einsenstein's Criterion (\ref{einsenstein}), with $q=7$ we have that $q
|
||||
\nmid 1$, $7 | {-7,0,0,\ldots}$, and $7^2 \nmid -7$, hence $f(t)$ is
|
||||
irreducibe over $\mathbb{Q}$, thus is the minimal polynomial
|
||||
$$m_i(t)= f(t) =t^6-7$$
|
||||
which has roots $\{ \alpha \zeta^k \}_0^5$.
|
||||
\item minimal polynomial of $\zeta$ over $\mathbb{Q}(\alpha)$\\
|
||||
Since $\zeta$ is the primitive $6$th root of unity, we know that the minimal
|
||||
polynomial will be the $6$th cyclotomic polynomial (\ref{cyclotomicpoly}):
|
||||
$$m_{ii}(t) = \Phi_6(t) = t^2 - t + 1$$
|
||||
which has roots $\zeta, -\zeta$.
|
||||
|
||||
Since $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, and the roots of
|
||||
$\Phi_6(t)=t^2 - t +1$ are in $\mathbb{C}$, $\Phi_6(t)$ remains irreducible
|
||||
over $\mathbb{Q}(\alpha)$.
|
||||
\end{enumerate}
|
||||
|
||||
\vspace{0.5cm}
|
||||
Therefore, by the tower of law,
|
||||
$$[\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = \deg{\Phi_6(t)} \cdot \deg{f(t)} = 2 \cdot 6 = 12$$
|
||||
and by the Fundamental Theorem of Galois Theory, we know that
|
||||
$$|\Gamma( \mathbb{Q}(\alpha, \zeta) : \mathbb{Q} )| = [\mathbb{Q}(\alpha, \zeta) : \mathbb{Q}] = 12$$
|
||||
which tells us that there exist $12$ $\mathbb{Q}$-automorphisms of the Galois group.
|
||||
|
||||
|
||||
\vspace{0.5cm}
|
||||
Let's find the $12$ $\mathbb{Q}$-automorphisms. Start by defining $\sigma$ which
|
||||
fixes $\zeta$ and acts on $\alpha$, sending it to another of the roots of the
|
||||
minimal polynomial of $\alpha$ over $\mathbb{Q}$, $f(t)$, choose $\alpha \zeta$.
|
||||
|
||||
Now define $\tau$ which fixes $\alpha$ and acts on $\zeta$, sending it into
|
||||
another root of the minimal polynomial of $\zeta$ over $\mathbb{Q}(\alpha)$,
|
||||
choose $-\zeta$.
|
||||
|
||||
\vspace{0.3cm}
|
||||
\begin{tabular}{@{}l l@{}}
|
||||
$\begin{aligned}
|
||||
\sigma: \alpha &\mapsto \alpha \zeta \\
|
||||
\zeta &\mapsto \zeta
|
||||
\end{aligned}$
|
||||
&
|
||||
$\begin{aligned}
|
||||
\tau: \alpha &\mapsto \alpha\\
|
||||
\zeta &\mapsto -\zeta = \zeta^{-1}
|
||||
\end{aligned}$
|
||||
\end{tabular}
|
||||
|
||||
In other words, we have $12$ $\mathbb{Q}$-automorphisms, which are the
|
||||
combination of $\sigma$ and $\tau$:
|
||||
|
||||
$$\begin{aligned}
|
||||
\sigma^k \tau^j:~~&\alpha \mapsto \alpha \zeta^k\\
|
||||
&\zeta \mapsto \zeta^j
|
||||
\end{aligned}$$
|
||||
|
||||
for $0 \leq k \leq 5$ and $j = \pm 1$.
|
||||
|
||||
\vspace{0.5cm}
|
||||
\emph{TODO diagram}
|
||||
\vspace{0.5cm}
|
||||
|
||||
Observe, that $\Gamma$ is generated by the combination of $\sigma$ and $\tau$,
|
||||
and it is isomorphic to the group of symmetries of order 12, the dihedral
|
||||
group (\ref{dihedral}) of order 12, $\mathbb{D}_6$, ie. $\Gamma \cong \mathbb{D}_6$.
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
Let's find the subgroups of $\Gamma$, and the fixed fields of $\mathbb{Q}(\alpha, \zeta)$.
|
||||
|
||||
We know that $\Gamma \cong \mathbb{D}_6$, and we know from the properties
|
||||
of the dihedral group (\ref{dihedral}) that the number of subgroups of
|
||||
$\mathbb{D}_6$ will be $d(6) + s(6) = 4 + 12 = 16$ subgroups.
|
||||
|
||||
|
||||
\vspace{0.4cm}
|
||||
|
||||
\hspace*{-3.5cm}
|
||||
\begin{tabular}{ c c c c | p{7.5cm} }
|
||||
\hline
|
||||
generators & order & group & fixed field & notes (check fixed field)\\
|
||||
\hline
|
||||
$\langle \rangle = \langle \sigma^6 \rangle=\langle \tau^2 \rangle$ & 1 & id & $\mathbb{Q}(\alpha,\zeta)$ & \\
|
||||
$\langle \sigma \rangle = \langle \sigma^5 \rangle$ & 6 & $\mathbb{Z}_6$ & $\mathbb{Q}(\zeta)$ & \\
|
||||
$\langle \sigma^2 \rangle=\langle \sigma^4 \rangle$ & 3 & $\mathbb{Z}_3$ & $\mathbb{Q}(\alpha^3, \zeta)$ & $\sigma^2(\alpha^3)=\alpha^3 \zeta^{3\cdot 2}=\alpha^3 \zeta^6 = \alpha^3 \cdot 1 = \alpha^3$\\
|
||||
$\langle \sigma^3 \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2,\zeta)$ & $\sigma^3(\alpha^2)=(\alpha\zeta^3)^2=\alpha^2\zeta^6=\alpha^2$\\
|
||||
\hline
|
||||
$\langle \tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha)$ & \\
|
||||
\hline
|
||||
$\langle \sigma\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta)$ &
|
||||
$\sigma\zeta(\alpha+\alpha\zeta)=\sigma(\alpha+\alpha\zeta^{-1}) = \alpha\zeta + \alpha\zeta^{-1}\zeta=\alpha\zeta+\alpha$\\
|
||||
$\langle \sigma^2\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^2), \mathbb{Q}(\alpha\zeta)$ &
|
||||
$\sigma^2\tau(\alpha+\alpha\zeta^2) = \sigma(\alpha+\alpha\zeta^{-2})=\alpha\zeta^2+ \alpha\zeta^{-2}\zeta^2=\alpha\zeta^2+\alpha$\\
|
||||
$\langle \sigma^3\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^3)$ &
|
||||
$\sigma^3\tau(\alpha+\alpha\zeta^3) = \sigma(\alpha+\alpha\zeta^{-3})=\alpha\zeta^3+ \alpha\zeta^{-3}\zeta^3=\alpha\zeta^3+\alpha$\\
|
||||
$\langle \sigma^4\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^4), \mathbb{Q}(\alpha\zeta^2)$ &
|
||||
$\sigma^4\tau(\alpha+\alpha\zeta^4) = \sigma(\alpha+\alpha\zeta^{-4})=\alpha\zeta^4+ \alpha\zeta^{-4}\zeta^4=\alpha\zeta^4+\alpha$\\
|
||||
$\langle \sigma^5\tau \rangle$ & 2 & $\mathbb{Z}_2$ & $\mathbb{Q}(\alpha+\alpha\zeta^5)$ &
|
||||
$\sigma^5\tau(\alpha+\alpha\zeta^5) = \sigma(\alpha+\alpha\zeta^{-5})=\alpha\zeta^5+ \alpha\zeta^{-5}\zeta^5=\alpha\zeta^5+\alpha$\\
|
||||
\hline
|
||||
$\langle \sigma, \tau \rangle = \langle \sigma^5,\tau \rangle$ & $6\cdot2=12$ & $\mathbb{D}_6$ & $\mathbb{Q}$ & \\
|
||||
$\langle \sigma^2, \tau \rangle = \langle \sigma^4,\tau \rangle$ & $3\cdot2=6$ & $\mathbb{D}_3$ & $\mathbb{Q}(\alpha^3)$ &
|
||||
$\sigma^2(\alpha^3)=\alpha^3\zeta^{3\cdot 2}=\alpha^3$ and $\tau(\alpha^3)=\alpha^3$\\
|
||||
$\langle \sigma^3, \tau \rangle$ & $2\cdot2=4$ & $\mathbb{D}_2$ & $\mathbb{Q}(\alpha^2)$ &
|
||||
$\sigma^3(\alpha^2)=\alpha^2\zeta^{2\cdot 2}=\alpha^2$ and $\tau(\alpha^2)=\alpha^2$\\
|
||||
\hline
|
||||
$\langle \sigma^2, \sigma\tau \rangle$ & $3\cdot 2=6$ & $\mathbb{D}_3$ & $\mathbb{Q}(\alpha^3+\alpha^3\zeta^3)$ &
|
||||
$\sigma^2(\alpha^3 + \alpha^3 \zeta^3) = \alpha^3\zeta^3 + \alpha^3 \zeta^3\zeta^3 = \alpha^3\zeta^3 + \alpha^3\zeta^6 = \alpha^3\zeta^3+\alpha^3$\\
|
||||
$\langle \sigma^3, \sigma\tau \rangle$ & $2\cdot2=4$ & $\mathbb{Z}_2 \times \mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2\zeta^2),\mathbb{Q}(\alpha^2+\alpha^2\zeta^2)$ &
|
||||
$\sigma^3(\alpha^2+\alpha^2\zeta^2)=\alpha^2\zeta^{2\cdot3}+\alpha^2\zeta^{2\cdot3}\zeta^2=\alpha^2+\alpha^2\zeta^2$
|
||||
and
|
||||
$\sigma\tau(\alpha^2+\alpha^2\zeta^2)=\alpha^2\zeta^2+\alpha^2\zeta^{-2}\zeta^2 = \alpha^2\zeta^2+\alpha^2$\\
|
||||
$\langle \sigma^3, \sigma^2\tau\rangle$ & $2\cdot2=4$ & $\mathbb{Z}_2 \times \mathbb{Z}_2$ & $\mathbb{Q}(\alpha^2\zeta^4),\mathbb{Q}(\alpha^2+\alpha^2\zeta^4)$ &
|
||||
$\sigma^2\zeta(\alpha^2\zeta^4)=\alpha^2\zeta^2\zeta^{-4}=\alpha^2\zeta^{-2}=\alpha^2\zeta^4$
|
||||
and $\sigma^3(\alpha^2\zeta^4)=\alpha^2\zeta^{2\cdot3}\zeta^4=\alpha^2\zeta^4$
|
||||
\end{tabular}
|
||||
|
||||
|
||||
|
||||
\bibliographystyle{unsrt}
|
||||
\bibliography{galois-theory-notes.bib}
|
||||
|
||||
BIN
notes_ntt.pdf
BIN
notes_ntt.pdf
Binary file not shown.
BIN
weil-pairing.pdf
BIN
weil-pairing.pdf
Binary file not shown.
@@ -37,9 +37,18 @@
|
||||
\maketitle
|
||||
|
||||
\begin{abstract}
|
||||
Notes taken from \href{https://sites.google.com/view/matanprasmashomepage/publications}{Matan Prasma} math seminars and also while reading about Bilinear Pairings. Usually while reading papers and books I take handwritten notes, this document contains some of them re-written to $LaTeX$.
|
||||
Notes taken from
|
||||
\href{https://sites.google.com/view/matanprasmashomepage/publications}{Matan
|
||||
Prasma} math seminars and while reading about Bilinear Pairings, Matan's
|
||||
course seminars are available at the following youtube playlist:\\
|
||||
\href{https://www.youtube.com/watch?v=JYSQYaAhJYc&list=PLV91V4b0yVqQ_inAjuIB5SwBNyYmA9S6M}{https://www.youtube.com/watch?v=JYSQYaAhJYc&list=PLV91V4b0yVqQ_inAjuIB5SwBNyYmA9S6M}
|
||||
and in his website there are the full notes on that course, named
|
||||
\emph{Elliptic curves over finite fields and their pairings, an elementary and rigorous account}\\
|
||||
\href{https://sites.google.com/view/matanprasmashomepage/publications}{https://sites.google.com/view/matanprasmashomepage/publications};
|
||||
highly recommended!
|
||||
|
||||
The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.
|
||||
Usually while learning I take handwritten notes, this document contains some of them re-written to $LaTeX$.
|
||||
The notes are not complete, don't include all the steps neither all the proofs. I use these notes to revisit the concepts after some time of reading the topic.
|
||||
\end{abstract}
|
||||
|
||||
\tableofcontents
|
||||
|
||||
Reference in New Issue
Block a user