Browse Source

Add Blind Sig over EC Sage impl

master
arnaucube 2 years ago
parent
commit
498a522e1d
1 changed files with 87 additions and 0 deletions
  1. +87
    -0
      blind-sign-over-ec.sage

+ 87
- 0
blind-sign-over-ec.sage

@ -0,0 +1,87 @@
# Implementation of: https://sci-hub.se/10.1109/iccke.2013.6682844
# more details at: https://arnaucube.com/blog/blind-signatures-ec.html#the-scheme
# A Go implementation of this schema can be found at: https://github.com/arnaucube/go-blindsecp256k1
from hashlib import sha256
def hash(m):
h_output = sha256(str(m).encode('utf-8'))
return int(h_output.hexdigest(), 16)
class User:
def __init__(self, F, G):
self.F = F # Z_q
self.G = G # elliptic curve generator
def blind_msg(self, m, R_):
self.a = self.F.random_element()
self.b = self.F.random_element()
self.R = self.a * R_ + self.b * self.G
m_ = self.F(self.a)^(-1) * self.F(self.R.xy()[0]) * self.F(hash(m))
return m_
def unblind_sig(self, s_):
s = self.a * s_ + self.b
return (self.R, s)
class Signer:
def __init__(self, F, G):
self.F = F # Z_q
self.G = G # elliptic curve generator
# gen Signer's key pair
self.d = self.F.random_element()
self.Q = self.G * self.d
def new_request_params(self):
self.k = self.F.random_element()
R_ = self.G * self.k
return R_
def blind_sign(self, m_):
return self.d * m_ + self.k
def verify(G, Q, sig, m):
(R, s) = sig
return s*G == R + (Fq(R.xy()[0]) * Fq(hash(m))) * Q
# ethereum elliptic curve
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0
b = 7
F = GF(p)
E = EllipticCurve(F, [a,b])
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
g = E(GX,GY)
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
q = g.order()
assert is_prime(p)
assert is_prime(q)
Fq = GF(q)
# protocol flow:
user = User(Fq, g)
signer = Signer(Fq, g)
R_ = signer.new_request_params()
m = 12345 # user's message
m_ = user.blind_msg(m, R_)
s_ = signer.blind_sign(m_)
sig = user.unblind_sig(s_)
v = verify(g, signer.Q, sig, m)
print(v)
assert v

Loading…
Cancel
Save