|
|
@ -12,6 +12,7 @@ |
|
|
|
linkcolor=black, |
|
|
|
urlcolor=blue |
|
|
|
} |
|
|
|
\usepackage{xcolor} |
|
|
|
|
|
|
|
% prevent warnings of underfull \hbox: |
|
|
|
\usepackage{etoolbox} |
|
|
@ -224,17 +225,115 @@ Identical to verification of a normal signature as long as we use the same corre |
|
|
|
$$e(g_1, \sigma_{aggr})==e(pk_{aggr}, H(m))$$ |
|
|
|
|
|
|
|
Unfold: |
|
|
|
$$e(pk_{aggr}, H(m))=e(pk_1 + pk_2 + \ldots + pk_n, H(m))=$$ |
|
|
|
$$\fbox{e(pk_{aggr}, H(m))}= e(pk_1 + pk_2 + \ldots + pk_n, H(m)) =$$ |
|
|
|
$$=e([sk_1] \cdot g_1 + [sk_2] \cdot g_1 + \ldots + [sk_n] \cdot g_1, H(m))=$$ |
|
|
|
$$=e([sk_1 + sk_2 + \ldots + sk_n] \cdot g_1, H(m))=$$ |
|
|
|
$$=e(g_1, H(m))^{(sk_1 + sk_2 + \ldots + sk_n)}=$$ |
|
|
|
$$=e(g_1, [sk_1 + sk_2 + \ldots + sk_n] \cdot H(m))=$$ |
|
|
|
$$=e(g_1, [sk_1] \cdot H(m) + [sk_2] \cdot H(m) + \ldots + [sk_n] \cdot H(m))=$$ |
|
|
|
$$=e(g_1, \sigma_1 + \sigma_2 + \ldots + \sigma_n)=e(g_1, \sigma_{aggr})$$ |
|
|
|
$$=e(g_1, \sigma_1 + \sigma_2 + \ldots + \sigma_n)= \fbox{e(g_1, \sigma_{aggr})}$$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\section{modified IPA (from Halo)} |
|
|
|
Notes taken while reading about the modified Inner Product Argument (IPA) from the Halo paper \cite{cryptoeprint:2019/1021}. |
|
|
|
|
|
|
|
\subsection{Notation} |
|
|
|
\begin{description} |
|
|
|
\item[Scalar mul] $[a]G$, where $a$ is a scalar and $G \in \mathbb{G}$ |
|
|
|
\item[Inner product] $<\overrightarrow{a}, \overrightarrow{b}> = a_0 b_0 + a_1 b_1 + \ldots + a_{n-1} b_{n-1}$ |
|
|
|
\item[Multiscalar mul] $<\overrightarrow{a}, \overrightarrow{b}> = [a_0] G_0 + [a_1] G_1 + \ldots [a_{n-1}] G_{n-1}$ |
|
|
|
\end{description} |
|
|
|
|
|
|
|
|
|
|
|
\subsection{Transparent setup} |
|
|
|
$\overrightarrow{G} \in^r \mathbb{G}^d$, $H \in^r \mathbb{G}$ |
|
|
|
|
|
|
|
Prover wants to commit to $p(x)=a_0$ |
|
|
|
\subsection{Protocol} |
|
|
|
Prover: |
|
|
|
$$P=<\overrightarrow{a}, \overrightarrow{G}> + [r]H$$ |
|
|
|
$$v=<\overrightarrow{a}, \{1, x, x^2, \ldots, x^{d-1} \} >$$ |
|
|
|
|
|
|
|
where $\{1, x, x^2, \ldots, x^{d-1} \} = \overrightarrow{b}$. |
|
|
|
|
|
|
|
We can see that computing $v$ is the equivalent to evaluating $p(x)$ at $x$ ($p(x)=v$). |
|
|
|
|
|
|
|
We will prove: |
|
|
|
\begin{enumerate}[i.] |
|
|
|
\item polynomial $p(X) = \sum a_i X^i$\\ |
|
|
|
$p(x) = v$ (that $p(X)$ evaluates $x$ to $v$). |
|
|
|
\item $deg(p(X)) \leq d-1$ |
|
|
|
\end{enumerate} |
|
|
|
|
|
|
|
|
|
|
|
Both parties know $P$, point $x$ and claimed evaluation $v$. For $U \in^r \mathbb{G}$, |
|
|
|
|
|
|
|
$$P' = P + [v] U = <\overrightarrow{a}, G> + [r]H + [v] U$$ |
|
|
|
|
|
|
|
Now, for $k$ rounds ($d=2^k$, from $j=k$ to $j=1$): |
|
|
|
\begin{itemize} |
|
|
|
\item random blinding factors: $l_j, r_j \in \mathbb{F}_p$ |
|
|
|
\item |
|
|
|
$$L_j = < \overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [< \overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U$$ |
|
|
|
$$L_j = < \overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [< \overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U$$ |
|
|
|
\item Verifier sends random challenge $u_j \in \mathbb{I}$ |
|
|
|
\item Prover computes the halved vectors for next round: |
|
|
|
$$\overrightarrow{a} \leftarrow \overrightarrow{a}_{hi} \cdot u_j^{-1} + \overrightarrow{a}_{lo} \cdot u_j$$ |
|
|
|
$$\overrightarrow{b} \leftarrow \overrightarrow{b}_{lo} \cdot u_j^{-1} + \overrightarrow{b}_{hi} \cdot u_j$$ |
|
|
|
$$\overrightarrow{G} \leftarrow \overrightarrow{G}_{lo} \cdot u_j^{-1} + \overrightarrow{G}_{hi} \cdot u_j$$ |
|
|
|
\end{itemize} |
|
|
|
|
|
|
|
After final round, $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{G}$ are each of length 1. |
|
|
|
|
|
|
|
Verifier can compute |
|
|
|
$$G = \overrightarrow{G}_0 = < \overrightarrow{s}, \overrightarrow{G} >$$ |
|
|
|
and $$b = \overrightarrow{b}_0 = < \overrightarrow{s}, \overrightarrow{b} >$$ |
|
|
|
where $\overrightarrow{s}$ is the binary counting structure: |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
&s = (u_1^{-1} ~ u_2^{-1} \cdots ~u_k^{-1},\\ |
|
|
|
&~~~~~~u_1 ~~~ u_2^{-1} ~\cdots ~u_k^{-1},\\ |
|
|
|
&~~~~~~u_1^{-1} ~~ u_2 ~~\cdots ~u_k^{-1},\\ |
|
|
|
&~~~~~~~~~~~~~~\vdots\\ |
|
|
|
&~~~~~~u_1 ~~~~ u_2 ~~\cdots ~u_k) |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
|
|
|
|
And verifier checks: |
|
|
|
$$[a]G + [r'] H + [ab] U == P' + \sum_{j=1}^k ( [u_j^2] L_j + [u_j^{-2}] R_j)$$ |
|
|
|
|
|
|
|
where the synthetic blinding factor $r'$ is $r' = r + \sum_{j=1}^k (l_j u_j^2 + r_j u_j^{-2})$. |
|
|
|
|
|
|
|
\vspace{1cm} |
|
|
|
|
|
|
|
Unfold: |
|
|
|
|
|
|
|
$$ |
|
|
|
\textcolor{brown}{[a]G} + \textcolor{cyan}{[r'] H} + \textcolor{magenta}{[ab] U} |
|
|
|
== |
|
|
|
\textcolor{blue}{P'} + \sum_{j=1}^k ( \textcolor{violet}{[u_j^2] L_j} + \textcolor{orange}{[u_j^{-2}] R_j}) |
|
|
|
$$ |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
&Right~side = \textcolor{blue}{P'} + \sum_{j=1}^k ( \textcolor{violet}{[u_j^2] L_j} + \textcolor{orange}{[u_j^{-2}] R_j})\\ |
|
|
|
&= \textcolor{blue}{< \overrightarrow{a}, \overrightarrow{G}> + [r] H + [v] U}\\ |
|
|
|
&+ \sum_{j=1}^k (\\ |
|
|
|
&\textcolor{violet}{[u_j^2] \cdot <\overrightarrow{a}_{lo}, \overrightarrow{G}_{hi}> + [l_j] H + [<\overrightarrow{a}_{lo}, \overrightarrow{b}_{hi}>] U}\\ |
|
|
|
&\textcolor{orange}{+ [u_j^{-2}] \cdot <\overrightarrow{a}_{hi}, \overrightarrow{G}_{lo}> + [r_j] H + [<\overrightarrow{a}_{hi}, \overrightarrow{b}_{lo}>] U} |
|
|
|
) |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
\begin{align*} |
|
|
|
&Left~side = \textcolor{brown}{[a]G} + \textcolor{cyan}{[r'] H} + \textcolor{magenta}{[ab] U}\\ |
|
|
|
& = \textcolor{brown}{< \overrightarrow{a}, \overrightarrow{G} >}\\ |
|
|
|
&+ \textcolor{cyan}{[r + \sum_{j=1}^k (l_j \cdot u_j^2 + r_j u_j^{-2})] \cdot H}\\ |
|
|
|
&+ \textcolor{magenta}{< \overrightarrow{a}, \overrightarrow{b} > U} |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
|
|
|
|
\bibliography{paper-notes.bib} |
|
|
|
\bibliographystyle{unsrt} |
|
|
|
|
|
|
|