Browse Source

galois notes: add cyclotomic polynomials notes

master
arnaucube 1 week ago
parent
commit
561324be5a
4 changed files with 164 additions and 12 deletions
  1. BIN
      galois-theory-notes.pdf
  2. +162
    -10
      galois-theory-notes.tex
  3. BIN
      notes_ntt.pdf
  4. +2
    -2
      notes_ntt.tex

BIN
galois-theory-notes.pdf


+ 162
- 10
galois-theory-notes.tex

@ -6,6 +6,7 @@
\usepackage{enumerate} \usepackage{enumerate}
\usepackage{hyperref} \usepackage{hyperref}
\usepackage{amssymb} \usepackage{amssymb}
\usepackage{tikz} % diagram
\begin{filecontents}[overwrite]{galois-theory-notes.bib} \begin{filecontents}[overwrite]{galois-theory-notes.bib}
@misc{ianstewart, @misc{ianstewart,
@ -14,9 +15,24 @@
year = {2004} year = {2004}
} }
@misc{milneFT,
author={Milne, James S.},
title={Fields and Galois Theory (v5.10)},
year={2022},
note={Available at \url{https://jmilne.org/math/} },
pages={144}
}
@misc{berlekamp,
author={Elmyn Berlekamp},
title={Algebraic Coding Theory},
year={1984},
note={Revised Edition from 1984}
}
@misc{dihedral, @misc{dihedral,
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty}
title = {Subgroups and normal subgroups of dihedral group up to isomorphism}
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty},
title = {Subgroups and normal subgroups of dihedral group up to isomorphism},
year = {2010}, year = {2010},
note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}}, note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}},
url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf} url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}
@ -62,7 +78,7 @@
\maketitle \maketitle
\begin{abstract} \begin{abstract}
Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
Notes taken while studying Galois Theory, mostly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$. Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$.
@ -158,7 +174,7 @@
From \ref{shorttowerlaw}. From \ref{shorttowerlaw}.
\end{proof} \end{proof}
[...]
[...] TODO: pending to add key parts up to Chapter 15.
\newpage \newpage
@ -180,6 +196,9 @@ for $k=0, \ldots, n-1$.
So, by Euler's formula: So, by Euler's formula:
$$z_k = \sqrt[n]{r} \cdot e^{i (\frac{\theta + 2 k \pi}{n})}$$ $$z_k = \sqrt[n]{r} \cdot e^{i (\frac{\theta + 2 k \pi}{n})}$$
Usually we will set $\alpha=\sqrt[n]{r}$ and $\zeta = e^{\frac{2 \pi i}{n}}$,
and find the $\mathbb{Q}$-automorphisms from there (see \ref{ex:galoisgroups} for examples).
\subsection{Einsenstein's Criterion} \label{einsenstein} \subsection{Einsenstein's Criterion} \label{einsenstein}
\emph{reference: Stewart's book} \emph{reference: Stewart's book}
@ -198,9 +217,110 @@ Then, $f$ is irreducible over $\mathbb{Q}$.
\emph{TODO from orange notebook, page 36} \emph{TODO from orange notebook, page 36}
\subsection{Cyclotomic polynomials} \label{cyclotomicpoly} \subsection{Cyclotomic polynomials} \label{cyclotomicpoly}
\emph{TODO theory from brown muji notebook, page 82}
\subsubsection{From Elmyn Berlekamp's "Algebraic Coding Theory" book}
The notes in this section are from the book "Algebraic Coding Theory" by Elmyn
Berlekamp \cite{berlekamp}.
\vspace{0.3cm}
Some times we might find polynomials that have the shape of $t^n - 1$, those are \emph{cyclotomic polynomials}, and have some properties that might be useful.
Observe that in a finite field of order $q$, factoring $x^q - x$ gives
$$x^q-x = x(x^{q-1} -1)$$
The factor $x^{q-1} -1$ is a special case of $x^n -1$: if we assume that the
field contains an element $\alpha$ of order $n$, then the roots of $x^n-1=0$ are
$$1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^{n-1}$$
and $\deg(x^n-1)=n$, thus $x^n-1$ has at most $n$ roots in any field, henceforth
the powers of $\alpha$ must include all the $n$-th roots of unity.
There fore, in any field which contains a primitive $n$-th root of unity we have:
\begin{thm}{4.31}
$$x^n -1 = \prod_{i=0}^{n-1} (x - \alpha^i) = \prod_{i=1}^n (x-\alpha^i)$$
\end{thm}
If $n=k \cdot d$, then $\alpha^k, \alpha^{2k}, \alpha^{3k}, \ldots, \alpha^{dk}$ are all roots of $x^d -1 =0$
Every element with order dividing $n$, must be a power of $\alpha$, since an
element of order $d$ is a $d$-th root of unity.
Every power of $\alpha$ has order which divides $n$, and every field element
whose order divides $n$ is a power of $\alpha$. This suggests that we partition
the powers of $\alpha$ according to their orders:
$$x^n -1 = \prod_{\stackrel{d,}{d|n}} \prod_{\beta} (x- \beta)$$
where at each iteration, $\beta$ is a field element of order $d$ for each $d$.
The polynomial whose roots are the field elements of order $d$ is called the
\emph{cyclotomic polynomial}, denoted by $Q^{(d)}(x)$.
\begin{thm}{4.32}
$$x^n -1 = \prod_{\stackrel{d,}{d|n}} Q^{(d)}(x)$$
\end{thm}
\subsubsection{From Ian Stewart's ``Galois Theory'' book}
Notes from Ian Stewart's book \cite{ianstewart}.
Examples:
Consider the case $n=12$, let $\zeta=e^{\pi i /6}$ be a primitive $12$-th root of unity.
Classify its powers ($\zeta^j$) according to their minimal power $d$ such that
$(\zeta^j)^d = 1$ (ie. when they are primitive $d$-th roots of unity).
\begin{enumerate}[]
\item $d=1,~~~ 1$
\item $d=2,~~~ \zeta^6$
\item $d=3,~~~ \zeta^4, \zeta^8$
\item $d=4,~~~ \zeta^3, \zeta^9$
\item $d=6,~~~ \zeta^2, \zeta^{10}$
\item $d=12,~~~ \zeta, \zeta^5, \zeta^7, \zeta^{11}$
\end{enumerate}
Observe that we can factorize $t^{12} -1$ by grouping the corresponding zeros:
\begin{align*}
t^{12}-1 = &(t-1) \times\\
&(t-\zeta^6) \times\\
&(t-\zeta^4) (t-\zeta^8) \times\\
&(t-\zeta^3) (t-\zeta^9) \times\\
&(t-\zeta^2) (t-\zeta^{10}) \times\\
&(t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11})
\end{align*}
which simplifies to
$$t^{12}-1=(t-1)(t+1)(t^2+t+1)(t^2+1)(t^2-t+1)F(t)$$
where $F(t) = (t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11}) = t^4 -t^2 + 1$ (this last step can be obtained either by multiplying $(t-\zeta)(t-\zeta^5)(t-\zeta^7) (t-\zeta^{11})$ together, or by dividing $t^{12}-1$ by all the other factors).
Let $\Phi_d(t)$ be the factor corresponding to primitive $d$-th roots of unity, then we have proved that
$$t^{12}-1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12}$$
\begin{defn}{21.5}
The polynomial $\Phi_d(t)$ defined by
$$\Phi_n(t) = \prod_{a\in \mathbb{Z}_n,(a,n)=1} (t- \zeta^a)$$
is the $n$-th \emph{cyclotomic polynomial} over \mathbb{C}.
\end{defn}
\begin{cor}{21.6}
$\forall n \in \mathbb{N}$, the polynomial $\Phi_n(t)$ lies in $\mathbb{Z}[t]$ and is monic and irreducible.
\end{cor}
\begin{thm}{21.9}
\begin{enumerate}
\item The Galois group $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q})$ consists of the
$\mathbb{Q}$-automorphisms $\psi_j$ defined by
$$\psi_j(\zeta)=\zeta^j$$
where $0 \leq j \leq n-1$ and $j$ is prime to $n$.
\item $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q}) \stackrel{iso}{\cong} \mathbb{Z}_n^*$, and is an abelian group.
\item its order is $\phi(n)$
\item if $n$ is prime, $\mathbb{Z}_n^*$ is cyclic
\end{thm}
\vspace{1cm}
\subsubsection{Examples}
Examples of cyclotomic polynomials:
\begin{align*} \begin{align*}
\Phi_n(x) &= x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i\\ \Phi_n(x) &= x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i\\
@ -210,7 +330,7 @@ Examples:
\subsection{Lemma 1.42 from J.S.Milne's book} \subsection{Lemma 1.42 from J.S.Milne's book}
\emph{TODO add reference to Milne's book}
Lemma from J.S.Milne's book \cite{milneFT}.
Useful for when dealing with $x^p - 1$ with $p$ prime. Useful for when dealing with $x^p - 1$ with $p$ prime.
@ -249,7 +369,7 @@ Properties:
\begin{itemize} \begin{itemize}
\item are non-abelian (for $n>2$), ie. $rs \neq sr$ \item are non-abelian (for $n>2$), ie. $rs \neq sr$
\item order $2n$ \item order $2n$
\item generated by a rotation $r$ and a reflextion $s$
\item generated by a rotation $r$ and a reflection $s$
\item $r^n = s^2 = id,~~~(rs)^2=id$ \item $r^n = s^2 = id,~~~(rs)^2=id$
\end{itemize} \end{itemize}
Subgroups of $\mathbb{D}_n$: Subgroups of $\mathbb{D}_n$:
@ -281,7 +401,7 @@ For $n \geq 3, ~~\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry
\section{Exercises} \section{Exercises}
\subsection{Galois groups}
\subsection{Galois groups}\label{ex:galoisgroups}
\subsubsection[t6-7]{$t^6-7 \in \mathbb{Q}$} \subsubsection[t6-7]{$t^6-7 \in \mathbb{Q}$}
@ -364,7 +484,39 @@ $$\begin{aligned}
for $0 \leq k \leq 5$ and $j = \pm 1$. for $0 \leq k \leq 5$ and $j = \pm 1$.
\vspace{0.5cm} \vspace{0.5cm}
\emph{TODO diagram}
NOTE: WIP diagram.
\begin{tikzpicture}[node distance=2cm]
\def \radius{2}
\draw (0,0) circle (\radius);
\foreach \k in {0,...,5} {
% \node (a\k) at ({360/6 * \k}:\radius) {$\alpha \zeta^{\k}$};
\node (a\k) at ({360/6 * \k}:\radius+0.5) {$\alpha \zeta^{\k}$};
\fill ({360/6 * \k}:\radius) circle (2pt);
}
% real & im axis
\draw[->] (-2.5,0) -- (2.5,0) node[right] {};
\draw[->] (0,-2.5) -- (0,2.5) node[above] {};
% tau:
\draw[<->] (3,1) -- (3,-1) node[right] {$\tau$};
% sigma:
% \foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} {
% \coordinate (p\k) at ({360/6 * \k}:\radius);
% \coordinate (p\next) at ({360/6 * \next}:\radius);
%
% \draw[->, bend left=30] (p\k.center) -- node[above] {$\sigma$} (p\next.center);
% }
\foreach \k in {0,...,5} {
\coordinate (p\k) at ({360/6 * \k}:\radius);
}
\foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} {
\draw[->, bend left=30] (p\k) -- node[above] {$\sigma$} (p\next);
}
\end{tikzpicture}
\vspace{0.5cm} \vspace{0.5cm}
Observe, that $\Gamma$ is generated by the combination of $\sigma$ and $\tau$, Observe, that $\Gamma$ is generated by the combination of $\sigma$ and $\tau$,

BIN
notes_ntt.pdf


+ 2
- 2
notes_ntt.tex

@ -34,8 +34,8 @@
The notes are not complete, don't include all the steps neither all the proofs. The notes are not complete, don't include all the steps neither all the proofs.
An implementation of the NTT can be found at\\
\href{https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs}{https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs}.
Update: an implementation of the NTT can be found at\\
\href{https://github.com/arnaucube/fhe-study/blob/main/arith/src/ntt.rs}{https://github.com/arnaucube/fhe-study/blob/main/arith/src/ntt.rs}.
\end{abstract} \end{abstract}
\tableofcontents \tableofcontents

Loading…
Cancel
Save