|
|
@ -37,6 +37,21 @@ |
|
|
|
note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}}, |
|
|
|
url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf} |
|
|
|
} |
|
|
|
|
|
|
|
@misc{judson, |
|
|
|
author={Thomas W. Judson}, |
|
|
|
title={Abstract Algebra: theory and applications}, |
|
|
|
year={1994}, |
|
|
|
note={Available at \url{http://abstract.ups.edu/download.html} }, |
|
|
|
pages={438} |
|
|
|
} |
|
|
|
|
|
|
|
@misc{dummitfoote, |
|
|
|
author={David S. Dummit and Richard M. Foote}, |
|
|
|
title={Abstract Algebra (Third Edition)}, |
|
|
|
year={2004}, |
|
|
|
pages={945} |
|
|
|
} |
|
|
|
\end{filecontents} |
|
|
|
\nocite{*} |
|
|
|
|
|
|
@ -87,7 +102,8 @@ |
|
|
|
|
|
|
|
\tableofcontents |
|
|
|
|
|
|
|
\section{Recap on the degree of field extensions} |
|
|
|
\section{Galois Theory notes} |
|
|
|
\subsection{Chapters 4-6} |
|
|
|
(Definitions, theorems, lemmas, corollaries and examples enumeration follows from Ian Stewart's book \cite{ianstewart}). |
|
|
|
|
|
|
|
\begin{defn}{4.10} |
|
|
@ -176,6 +192,201 @@ |
|
|
|
|
|
|
|
[...] TODO: pending to add key parts up to Chapter 15. |
|
|
|
|
|
|
|
\subsection{Detour: Isomorphism Theorems} |
|
|
|
\begin{thm}{}(\emph{First Isomorphism Theorem}) \label{1stisothm} |
|
|
|
|
|
|
|
\begin{minipage}{0.75\textwidth} |
|
|
|
If $\psi: G \longrightarrow H$ a group homomorphism, then $ker(\psi) \triangleleft G$.\\ |
|
|
|
Let $\phi: G \longrightarrow G/ker(\psi)$ be the canonical homomorphism.\\ |
|
|
|
Then $\exists$ unique isomorphism $\eta: G/ker(\psi) \longrightarrow \psi(G)$ such that $\psi = \eta \phi$.\\ |
|
|
|
$\Longleftrightarrow$ ie. $G/ker(\psi) \cong \psi(G)$. |
|
|
|
\end{minipage} |
|
|
|
\hfill |
|
|
|
\begin{minipage}{0.2\textwidth} |
|
|
|
\begin{tikzpicture}[node distance=2.5cm, auto] |
|
|
|
\node (G) {$G$}; |
|
|
|
\node (H) [right of=G] {$H$}; |
|
|
|
\node (GmodK) [below of=G, xshift=1.25cm] {$G/\ker(\psi)$}; |
|
|
|
|
|
|
|
\draw[->] (G) to node {$\psi$} (H); |
|
|
|
\draw[->] (G) to node [swap] {$\phi$} (GmodK); |
|
|
|
\draw[->] (GmodK) to node [swap] {$\eta$} (H); |
|
|
|
\end{tikzpicture} |
|
|
|
\end{minipage} |
|
|
|
\end{thm} |
|
|
|
\begin{proof} |
|
|
|
\emph{(proof from Thomas W. Judson book "Abstract Algebra" \cite{judson})}\\ |
|
|
|
|
|
|
|
Let $K=ker(\psi)$. |
|
|
|
Since |
|
|
|
$$\eta: G/K \longrightarrow \psi(G)$$ |
|
|
|
let |
|
|
|
$$\eta: gK \longrightarrow \psi(g)$$ |
|
|
|
ie. $\eta(gK)=\psi(g)$. |
|
|
|
|
|
|
|
\begin{enumerate}[i.] |
|
|
|
\item show that $\eta$ is a \emph{well defined} map: |
|
|
|
|
|
|
|
if $g_1 K=g_2 K$, then for some $k \in K$, $g_1 k =g_2$, so |
|
|
|
$$\eta(g_1K)=\psi(g_1) = \psi(g_1)\psi(k) = \psi(g_1 k) = \psi(g_2) = \eta(g_2 k)$$ |
|
|
|
|
|
|
|
Thus, $\eta$ does not depend on the choice of coset representatives, and |
|
|
|
the map $\eta: G/ker(\psi) \longrightarrow \psi(G)$ is uniquely defined |
|
|
|
since $\psi=\eta\phi$. |
|
|
|
|
|
|
|
\item show that $\eta$ is a homomorphism: |
|
|
|
|
|
|
|
Observe: |
|
|
|
$$\eta(g_1 K g_2 K) = \eta(g_1 g_2 K) = \psi(g_1 g_2) = \psi(g_1) \psi(g_2) = \eta(g_1 K) \eta(g_2 K)$$ |
|
|
|
$\Longrightarrow$ so $\eta$ is a homomorphism. |
|
|
|
|
|
|
|
\item show that $\eta$ is an isomorphism: |
|
|
|
|
|
|
|
Since each element of $H=\psi(G)$ has at least a preimage, then $\eta$ is \emph{surjective} (onto $\psi(G)$). |
|
|
|
|
|
|
|
Show that it is also \emph{injective} (onet-to-one): |
|
|
|
|
|
|
|
Suppose 2 different preimatges lead to the same image in $\psi(G)$, ie. |
|
|
|
$\eta(g_1 K) = \eta(g_2 K)$ |
|
|
|
|
|
|
|
then, |
|
|
|
$$\psi(g_1) = \psi(g_2)$$ |
|
|
|
which implies $\psi(g_1^{-1} g_2) = e$, ie. $g_1^{-1} g_2 \in ker(\psi)$, |
|
|
|
hence |
|
|
|
$$g_1^{-1} g_2 K = K$$ |
|
|
|
$$g_1 K = g_2 K$$ |
|
|
|
so $\eta$ is injective. |
|
|
|
\end{enumerate} |
|
|
|
|
|
|
|
Since $\eta$ is injective and surjective $\Longrightarrow$ $\eta$ is a bijective homomorphism,\\ |
|
|
|
ie. $\eta$ is an \emph{isomorphism}. |
|
|
|
\end{proof} |
|
|
|
|
|
|
|
|
|
|
|
\begin{thm}{}(\emph{Second Isomorphism Theorem}) \label{2ndisothm} |
|
|
|
Let $H \subseteq G$, $N \triangleleft G$. Then |
|
|
|
\begin{enumerate}[i.] |
|
|
|
\item $HN \subseteq G$ |
|
|
|
\item $H \cap N \triangleleft H$ |
|
|
|
\item $\frac{H}{H \cap N} \cong \frac{HN}{N}$ |
|
|
|
\end{enumerate} |
|
|
|
\end{thm} |
|
|
|
\begin{proof} |
|
|
|
\emph{(proof from Thomas W. Judson book "Abstract Algebra" \cite{judson})}\\ |
|
|
|
|
|
|
|
\begin{enumerate}[i.] |
|
|
|
\item show $HN \subseteq G$:\\ |
|
|
|
Note that $HN = \{ hn : h\in H, n\in N \}$. Let $h_1 n_1, h_2 n_2 \in HN$. |
|
|
|
|
|
|
|
Since $N$ normal $\Longrightarrow~ h_2^{-1} n_1 h_2 \in N$, so |
|
|
|
$$(h_1 n_1)(h_2 n_2) = h_1 h_2 (h_2^{-1} n_1 h_2) \in HN$$ |
|
|
|
|
|
|
|
[Recall: since $N \triangleleft G$, $gN=Ng ~\forall g \in G$ $\Longrightarrow gn=n'g$ for some $n' \in N$.] |
|
|
|
|
|
|
|
To see that $(hn)^{-1} \in HN$:\\ |
|
|
|
since $(hn)^{-1} = n^{-1} h^{-1} = h^{-1} (h n^{-1} h^{-1})$, thus $(hn)^{-1} \in HN$. |
|
|
|
|
|
|
|
Thus $HN \subseteq G$. |
|
|
|
|
|
|
|
|
|
|
|
In fact, $$HN = \bigcup_{h \in H} hN$$ |
|
|
|
|
|
|
|
(TODO: diagram) |
|
|
|
|
|
|
|
\item show that $H \cap N \triangleleft H$:\\ |
|
|
|
Let $h \in H,~ n \in H \cap N$ (recall: $H \cap N \subseteq H$).\\ |
|
|
|
Then $h^{-1}nh \in H$ $\longleftarrow$ since $h^{-1}, n, h \in H$.\\ |
|
|
|
Since $N \triangleleft G$, $h^{-1} n h \in N$.\\ |
|
|
|
Therefore, $h^{-1}nh \in H \cap N$ $\Longrightarrow~ H \cap N \triangleleft H$ |
|
|
|
|
|
|
|
\item show that $\frac{H}{H \cap N} \cong \frac{HN}{N}$:\\ |
|
|
|
Define a map |
|
|
|
\begin{align*} |
|
|
|
\phi: &H \longrightarrow \frac{HN}{N}\\ |
|
|
|
\text{by}~ \phi: &h \longmapsto hN |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
$\phi$ is surjective (onto), since any coset $hnN=hN$ is the image of $h \in H$, ie. $\phi(h)$ |
|
|
|
|
|
|
|
$\phi$ is a homomorphism, since |
|
|
|
$$\phi(h h') = h h' N = hN h'N = \phi(h)\phi(h')$$ |
|
|
|
|
|
|
|
By the First Isomorphism Theorem \ref{1stisothm}, |
|
|
|
$$\frac{HN}{N} \cong \frac{H}{ker(\phi)}$$ |
|
|
|
|
|
|
|
and since |
|
|
|
\begin{align*} |
|
|
|
&ker(\phi) = \{ h \in H : h \in N\}\\ |
|
|
|
&\text{then}~~ker(\phi) = H \cap N |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
so then, |
|
|
|
$$\frac{HN}{N} = \phi(H) \cong \frac{H}{ker(\phi)} = \frac{H}{H \cap N}$$ |
|
|
|
thus |
|
|
|
$$\frac{HN}{N} \cong \frac{H}{H \cap N}$$ |
|
|
|
|
|
|
|
\end{enumerate} |
|
|
|
\end{proof} |
|
|
|
|
|
|
|
|
|
|
|
\begin{thm}{}(\emph{Third Isomorphism Theorem}) \label{2ndisothm}\\ |
|
|
|
Let $H \subseteq K$ and $K \triangleleft G,~ H \triangleleft G$.\\ |
|
|
|
Then |
|
|
|
$\frac{K}{H} \triangleleft \frac{G}{H}$ |
|
|
|
and |
|
|
|
$$\frac{ G/H }{ K/H } \cong \frac{G}{K}$$ |
|
|
|
\end{thm} |
|
|
|
\begin{proof} |
|
|
|
\emph{(proof from Dummit and Foote book ``Abstract Algebra" \cite{dummitfoote})}\\ |
|
|
|
|
|
|
|
Easy to see that $\frac{K}{H} \triangleleft \frac{G}{H}$. |
|
|
|
|
|
|
|
Define |
|
|
|
\begin{align*} |
|
|
|
\psi: &\frac{G}{H} \longrightarrow \frac{G}{K}\\ |
|
|
|
\text{by}~ \psi: &gH \longmapsto gK |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
To show that $\psi$ is \emph{well defined}:\\ |
|
|
|
suppose $g_1 H = g_2 H$, then $g_1 = g_2 h$ for some $h \in H$.\\ |
|
|
|
Since $H \subseteq K \Longrightarrow~ h \in K$, hence $g_1 K = g_2 K$,\\ |
|
|
|
ie. $\psi(g_1 H) = \psi(g_2 H)$, which shows that $\psi$ is well defined. |
|
|
|
|
|
|
|
Since $g \in G$ may be chosen arbitrarily in $G$, $\psi$ is a surjective homomorphism. |
|
|
|
|
|
|
|
|
|
|
|
Finally, |
|
|
|
\begin{align*} |
|
|
|
ker(\psi) &= \{ gH \in \frac{G}{H} \mid \psi(gH)=1K \}\\ |
|
|
|
&= \{ gH \in \frac{G}{H} \mid gK =1K \}\\ |
|
|
|
&= \{ gH \in \frac{G}{H} \mid g \in K \}\\ |
|
|
|
&= \frac{K}{H} |
|
|
|
\end{align*} |
|
|
|
|
|
|
|
|
|
|
|
By the First Isomorphism Theorem (\ref{1stisothm}), |
|
|
|
|
|
|
|
\begin{tikzpicture}[node distance=2.5cm, auto] |
|
|
|
\node (GmodH) {$\frac{G}{H}$}; |
|
|
|
\node (GmodK) [right of=GmodH] {$\frac{G}{K}$}; |
|
|
|
\node (GmodHmodKer) [below of=G, xshift=1.25cm] {$\frac{G/H}{\ker(\psi)} = \frac{G/H}{K/H}$}; |
|
|
|
|
|
|
|
\draw[->] (GmodH) to node {$\psi$} (GmodK); |
|
|
|
\draw[->] (GmodH) to node [swap] {$\phi$} (GmodHmodKer); |
|
|
|
\draw[->] (GmodHmodKer) to node [swap] {$\eta$} (GmodK); |
|
|
|
\end{tikzpicture} |
|
|
|
|
|
|
|
So, by |
|
|
|
$$\eta: \frac{G/H}{K/H} \longrightarrow \frac{G}{K}$$ |
|
|
|
since $\eta$ is |
|
|
|
bijective (we know it by the First Isomorphism Theorem), $\eta$ it is the isomorphism: |
|
|
|
$$\frac{ G/H }{ K/H } \cong \frac{G}{K}$$ |
|
|
|
|
|
|
|
|
|
|
|
\end{proof} |
|
|
|
|
|
|
|
\subsection{Chapter 14} |
|
|
|
|
|
|
|
|
|
|
|
\newpage |
|
|
|
|
|
|
@ -296,7 +507,7 @@ $$t^{12}-1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12}$$ |
|
|
|
\begin{defn}{21.5} |
|
|
|
The polynomial $\Phi_d(t)$ defined by |
|
|
|
$$\Phi_n(t) = \prod_{a\in \mathbb{Z}_n,(a,n)=1} (t- \zeta^a)$$ |
|
|
|
is the $n$-th \emph{cyclotomic polynomial} over \mathbb{C}. |
|
|
|
is the $n$-th \emph{cyclotomic polynomial} over $\mathbb{C}$. |
|
|
|
\end{defn} |
|
|
|
|
|
|
|
\begin{cor}{21.6} |
|
|
@ -305,14 +516,15 @@ $$t^{12}-1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12}$$ |
|
|
|
|
|
|
|
\begin{thm}{21.9} |
|
|
|
\begin{enumerate} |
|
|
|
\item The Galois group $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q})$ consists of the |
|
|
|
$\mathbb{Q}$-automorphisms $\psi_j$ defined by |
|
|
|
$$\psi_j(\zeta)=\zeta^j$$ |
|
|
|
where $0 \leq j \leq n-1$ and $j$ is prime to $n$. |
|
|
|
|
|
|
|
\item $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q}) \stackrel{iso}{\cong} \mathbb{Z}_n^*$, and is an abelian group. |
|
|
|
\item its order is $\phi(n)$ |
|
|
|
\item if $n$ is prime, $\mathbb{Z}_n^*$ is cyclic |
|
|
|
\item The Galois group $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q})$ consists of the |
|
|
|
$\mathbb{Q}$-automorphisms $\psi_j$ defined by |
|
|
|
$$\psi_j(\zeta)=\zeta^j$$ |
|
|
|
where $0 \leq j \leq n-1$ and $j$ is prime to $n$. |
|
|
|
|
|
|
|
\item $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q}) \stackrel{iso}{\cong} \mathbb{Z}_n^*$, and is an abelian group. |
|
|
|
\item its order is $\phi(n)$ |
|
|
|
\item if $n$ is prime, $\mathbb{Z}_n^*$ is cyclic |
|
|
|
\end{enumerate} |
|
|
|
\end{thm} |
|
|
|
|
|
|
|
|
|
|
|