mirror of
https://github.com/arnaucube/math.git
synced 2026-01-09 23:41:33 +01:00
galois notes: add cyclotomic polynomials notes
This commit is contained in:
Binary file not shown.
@@ -6,6 +6,7 @@
|
||||
\usepackage{enumerate}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{tikz} % diagram
|
||||
|
||||
\begin{filecontents}[overwrite]{galois-theory-notes.bib}
|
||||
@misc{ianstewart,
|
||||
@@ -14,9 +15,24 @@
|
||||
year = {2004}
|
||||
}
|
||||
|
||||
@misc{milneFT,
|
||||
author={Milne, James S.},
|
||||
title={Fields and Galois Theory (v5.10)},
|
||||
year={2022},
|
||||
note={Available at \url{https://jmilne.org/math/} },
|
||||
pages={144}
|
||||
}
|
||||
|
||||
@misc{berlekamp,
|
||||
author={Elmyn Berlekamp},
|
||||
title={Algebraic Coding Theory},
|
||||
year={1984},
|
||||
note={Revised Edition from 1984}
|
||||
}
|
||||
|
||||
@misc{dihedral,
|
||||
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty}
|
||||
title = {Subgroups and normal subgroups of dihedral group up to isomorphism}
|
||||
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty},
|
||||
title = {Subgroups and normal subgroups of dihedral group up to isomorphism},
|
||||
year = {2010},
|
||||
note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}},
|
||||
url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}
|
||||
@@ -62,7 +78,7 @@
|
||||
\maketitle
|
||||
|
||||
\begin{abstract}
|
||||
Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
|
||||
Notes taken while studying Galois Theory, mostly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
|
||||
|
||||
Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$.
|
||||
|
||||
@@ -158,7 +174,7 @@
|
||||
From \ref{shorttowerlaw}.
|
||||
\end{proof}
|
||||
|
||||
[...]
|
||||
[...] TODO: pending to add key parts up to Chapter 15.
|
||||
|
||||
|
||||
\newpage
|
||||
@@ -180,6 +196,9 @@ for $k=0, \ldots, n-1$.
|
||||
So, by Euler's formula:
|
||||
$$z_k = \sqrt[n]{r} \cdot e^{i (\frac{\theta + 2 k \pi}{n})}$$
|
||||
|
||||
Usually we will set $\alpha=\sqrt[n]{r}$ and $\zeta = e^{\frac{2 \pi i}{n}}$,
|
||||
and find the $\mathbb{Q}$-automorphisms from there (see \ref{ex:galoisgroups} for examples).
|
||||
|
||||
\subsection{Einsenstein's Criterion} \label{einsenstein}
|
||||
\emph{reference: Stewart's book}
|
||||
|
||||
@@ -198,9 +217,110 @@ Then, $f$ is irreducible over $\mathbb{Q}$.
|
||||
\emph{TODO from orange notebook, page 36}
|
||||
|
||||
\subsection{Cyclotomic polynomials} \label{cyclotomicpoly}
|
||||
\emph{TODO theory from brown muji notebook, page 82}
|
||||
\subsubsection{From Elmyn Berlekamp's "Algebraic Coding Theory" book}
|
||||
The notes in this section are from the book "Algebraic Coding Theory" by Elmyn
|
||||
Berlekamp \cite{berlekamp}.
|
||||
|
||||
Examples:
|
||||
\vspace{0.3cm}
|
||||
|
||||
Some times we might find polynomials that have the shape of $t^n - 1$, those are \emph{cyclotomic polynomials}, and have some properties that might be useful.
|
||||
|
||||
Observe that in a finite field of order $q$, factoring $x^q - x$ gives
|
||||
$$x^q-x = x(x^{q-1} -1)$$
|
||||
|
||||
The factor $x^{q-1} -1$ is a special case of $x^n -1$: if we assume that the
|
||||
field contains an element $\alpha$ of order $n$, then the roots of $x^n-1=0$ are
|
||||
$$1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^{n-1}$$
|
||||
and $\deg(x^n-1)=n$, thus $x^n-1$ has at most $n$ roots in any field, henceforth
|
||||
the powers of $\alpha$ must include all the $n$-th roots of unity.
|
||||
|
||||
There fore, in any field which contains a primitive $n$-th root of unity we have:
|
||||
|
||||
\begin{thm}{4.31}
|
||||
$$x^n -1 = \prod_{i=0}^{n-1} (x - \alpha^i) = \prod_{i=1}^n (x-\alpha^i)$$
|
||||
\end{thm}
|
||||
|
||||
If $n=k \cdot d$, then $\alpha^k, \alpha^{2k}, \alpha^{3k}, \ldots, \alpha^{dk}$ are all roots of $x^d -1 =0$
|
||||
|
||||
Every element with order dividing $n$, must be a power of $\alpha$, since an
|
||||
element of order $d$ is a $d$-th root of unity.
|
||||
|
||||
Every power of $\alpha$ has order which divides $n$, and every field element
|
||||
whose order divides $n$ is a power of $\alpha$. This suggests that we partition
|
||||
the powers of $\alpha$ according to their orders:
|
||||
$$x^n -1 = \prod_{\stackrel{d,}{d|n}} \prod_{\beta} (x- \beta)$$
|
||||
where at each iteration, $\beta$ is a field element of order $d$ for each $d$.
|
||||
|
||||
The polynomial whose roots are the field elements of order $d$ is called the
|
||||
\emph{cyclotomic polynomial}, denoted by $Q^{(d)}(x)$.
|
||||
|
||||
\begin{thm}{4.32}
|
||||
$$x^n -1 = \prod_{\stackrel{d,}{d|n}} Q^{(d)}(x)$$
|
||||
\end{thm}
|
||||
|
||||
|
||||
\subsubsection{From Ian Stewart's ``Galois Theory'' book}
|
||||
Notes from Ian Stewart's book \cite{ianstewart}.
|
||||
|
||||
Consider the case $n=12$, let $\zeta=e^{\pi i /6}$ be a primitive $12$-th root of unity.
|
||||
Classify its powers ($\zeta^j$) according to their minimal power $d$ such that
|
||||
$(\zeta^j)^d = 1$ (ie. when they are primitive $d$-th roots of unity).
|
||||
|
||||
\begin{enumerate}[]
|
||||
\item $d=1,~~~ 1$
|
||||
\item $d=2,~~~ \zeta^6$
|
||||
\item $d=3,~~~ \zeta^4, \zeta^8$
|
||||
\item $d=4,~~~ \zeta^3, \zeta^9$
|
||||
\item $d=6,~~~ \zeta^2, \zeta^{10}$
|
||||
\item $d=12,~~~ \zeta, \zeta^5, \zeta^7, \zeta^{11}$
|
||||
\end{enumerate}
|
||||
|
||||
Observe that we can factorize $t^{12} -1$ by grouping the corresponding zeros:
|
||||
\begin{align*}
|
||||
t^{12}-1 = &(t-1) \times\\
|
||||
&(t-\zeta^6) \times\\
|
||||
&(t-\zeta^4) (t-\zeta^8) \times\\
|
||||
&(t-\zeta^3) (t-\zeta^9) \times\\
|
||||
&(t-\zeta^2) (t-\zeta^{10}) \times\\
|
||||
&(t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11})
|
||||
\end{align*}
|
||||
which simplifies to
|
||||
$$t^{12}-1=(t-1)(t+1)(t^2+t+1)(t^2+1)(t^2-t+1)F(t)$$
|
||||
where $F(t) = (t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11}) = t^4 -t^2 + 1$ (this last step can be obtained either by multiplying $(t-\zeta)(t-\zeta^5)(t-\zeta^7) (t-\zeta^{11})$ together, or by dividing $t^{12}-1$ by all the other factors).
|
||||
|
||||
|
||||
Let $\Phi_d(t)$ be the factor corresponding to primitive $d$-th roots of unity, then we have proved that
|
||||
$$t^{12}-1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12}$$
|
||||
|
||||
|
||||
\begin{defn}{21.5}
|
||||
The polynomial $\Phi_d(t)$ defined by
|
||||
$$\Phi_n(t) = \prod_{a\in \mathbb{Z}_n,(a,n)=1} (t- \zeta^a)$$
|
||||
is the $n$-th \emph{cyclotomic polynomial} over \mathbb{C}.
|
||||
\end{defn}
|
||||
|
||||
\begin{cor}{21.6}
|
||||
$\forall n \in \mathbb{N}$, the polynomial $\Phi_n(t)$ lies in $\mathbb{Z}[t]$ and is monic and irreducible.
|
||||
\end{cor}
|
||||
|
||||
\begin{thm}{21.9}
|
||||
\begin{enumerate}
|
||||
\item The Galois group $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q})$ consists of the
|
||||
$\mathbb{Q}$-automorphisms $\psi_j$ defined by
|
||||
$$\psi_j(\zeta)=\zeta^j$$
|
||||
where $0 \leq j \leq n-1$ and $j$ is prime to $n$.
|
||||
|
||||
\item $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q}) \stackrel{iso}{\cong} \mathbb{Z}_n^*$, and is an abelian group.
|
||||
\item its order is $\phi(n)$
|
||||
\item if $n$ is prime, $\mathbb{Z}_n^*$ is cyclic
|
||||
\end{thm}
|
||||
|
||||
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
\subsubsection{Examples}
|
||||
Examples of cyclotomic polynomials:
|
||||
|
||||
\begin{align*}
|
||||
\Phi_n(x) &= x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i\\
|
||||
@@ -210,7 +330,7 @@ Examples:
|
||||
|
||||
|
||||
\subsection{Lemma 1.42 from J.S.Milne's book}
|
||||
\emph{TODO add reference to Milne's book}
|
||||
Lemma from J.S.Milne's book \cite{milneFT}.
|
||||
|
||||
Useful for when dealing with $x^p - 1$ with $p$ prime.
|
||||
|
||||
@@ -249,7 +369,7 @@ Properties:
|
||||
\begin{itemize}
|
||||
\item are non-abelian (for $n>2$), ie. $rs \neq sr$
|
||||
\item order $2n$
|
||||
\item generated by a rotation $r$ and a reflextion $s$
|
||||
\item generated by a rotation $r$ and a reflection $s$
|
||||
\item $r^n = s^2 = id,~~~(rs)^2=id$
|
||||
\end{itemize}
|
||||
Subgroups of $\mathbb{D}_n$:
|
||||
@@ -281,7 +401,7 @@ For $n \geq 3, ~~\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry
|
||||
|
||||
\section{Exercises}
|
||||
|
||||
\subsection{Galois groups}
|
||||
\subsection{Galois groups}\label{ex:galoisgroups}
|
||||
|
||||
\subsubsection[t6-7]{$t^6-7 \in \mathbb{Q}$}
|
||||
|
||||
@@ -364,7 +484,39 @@ $$\begin{aligned}
|
||||
for $0 \leq k \leq 5$ and $j = \pm 1$.
|
||||
|
||||
\vspace{0.5cm}
|
||||
\emph{TODO diagram}
|
||||
|
||||
NOTE: WIP diagram.
|
||||
\begin{tikzpicture}[node distance=2cm]
|
||||
\def \radius{2}
|
||||
\draw (0,0) circle (\radius);
|
||||
|
||||
\foreach \k in {0,...,5} {
|
||||
% \node (a\k) at ({360/6 * \k}:\radius) {$\alpha \zeta^{\k}$};
|
||||
\node (a\k) at ({360/6 * \k}:\radius+0.5) {$\alpha \zeta^{\k}$};
|
||||
\fill ({360/6 * \k}:\radius) circle (2pt);
|
||||
}
|
||||
% real & im axis
|
||||
\draw[->] (-2.5,0) -- (2.5,0) node[right] {};
|
||||
\draw[->] (0,-2.5) -- (0,2.5) node[above] {};
|
||||
|
||||
|
||||
% tau:
|
||||
\draw[<->] (3,1) -- (3,-1) node[right] {$\tau$};
|
||||
% sigma:
|
||||
% \foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} {
|
||||
% \coordinate (p\k) at ({360/6 * \k}:\radius);
|
||||
% \coordinate (p\next) at ({360/6 * \next}:\radius);
|
||||
%
|
||||
% \draw[->, bend left=30] (p\k.center) -- node[above] {$\sigma$} (p\next.center);
|
||||
% }
|
||||
\foreach \k in {0,...,5} {
|
||||
\coordinate (p\k) at ({360/6 * \k}:\radius);
|
||||
}
|
||||
\foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} {
|
||||
\draw[->, bend left=30] (p\k) -- node[above] {$\sigma$} (p\next);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
Observe, that $\Gamma$ is generated by the combination of $\sigma$ and $\tau$,
|
||||
|
||||
BIN
notes_ntt.pdf
BIN
notes_ntt.pdf
Binary file not shown.
@@ -34,8 +34,8 @@
|
||||
|
||||
The notes are not complete, don't include all the steps neither all the proofs.
|
||||
|
||||
An implementation of the NTT can be found at\\
|
||||
\href{https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs}{https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs}.
|
||||
Update: an implementation of the NTT can be found at\\
|
||||
\href{https://github.com/arnaucube/fhe-study/blob/main/arith/src/ntt.rs}{https://github.com/arnaucube/fhe-study/blob/main/arith/src/ntt.rs}.
|
||||
\end{abstract}
|
||||
|
||||
\tableofcontents
|
||||
|
||||
Reference in New Issue
Block a user