Browse Source

galois notes: add cyclotomic polynomials notes

master
arnaucube 1 week ago
parent
commit
561324be5a
4 changed files with 164 additions and 12 deletions
  1. BIN
      galois-theory-notes.pdf
  2. +162
    -10
      galois-theory-notes.tex
  3. BIN
      notes_ntt.pdf
  4. +2
    -2
      notes_ntt.tex

BIN
galois-theory-notes.pdf


+ 162
- 10
galois-theory-notes.tex

@ -6,6 +6,7 @@
\usepackage{enumerate}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{tikz} % diagram
\begin{filecontents}[overwrite]{galois-theory-notes.bib}
@misc{ianstewart,
@ -14,9 +15,24 @@
year = {2004}
}
@misc{milneFT,
author={Milne, James S.},
title={Fields and Galois Theory (v5.10)},
year={2022},
note={Available at \url{https://jmilne.org/math/} },
pages={144}
}
@misc{berlekamp,
author={Elmyn Berlekamp},
title={Algebraic Coding Theory},
year={1984},
note={Revised Edition from 1984}
}
@misc{dihedral,
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty}
title = {Subgroups and normal subgroups of dihedral group up to isomorphism}
author = {Gaurab Bardhan and Palash Nath and Himangshu Chakraborty},
title = {Subgroups and normal subgroups of dihedral group up to isomorphism},
year = {2010},
note = {\url{https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}},
url = {https://scipp.ucsc.edu/~haber/ph251/Dn_subgroups.pdf}
@ -62,7 +78,7 @@
\maketitle
\begin{abstract}
Notes taken while studying Galois Theory, mostyly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
Notes taken while studying Galois Theory, mostly from Ian Stewart's book "Galois Theory" \cite{ianstewart}.
Usually while reading books and papers I take handwritten notes in a notebook, this document contains some of them re-written to $LaTeX$.
@ -158,7 +174,7 @@
From \ref{shorttowerlaw}.
\end{proof}
[...]
[...] TODO: pending to add key parts up to Chapter 15.
\newpage
@ -180,6 +196,9 @@ for $k=0, \ldots, n-1$.
So, by Euler's formula:
$$z_k = \sqrt[n]{r} \cdot e^{i (\frac{\theta + 2 k \pi}{n})}$$
Usually we will set $\alpha=\sqrt[n]{r}$ and $\zeta = e^{\frac{2 \pi i}{n}}$,
and find the $\mathbb{Q}$-automorphisms from there (see \ref{ex:galoisgroups} for examples).
\subsection{Einsenstein's Criterion} \label{einsenstein}
\emph{reference: Stewart's book}
@ -198,9 +217,110 @@ Then, $f$ is irreducible over $\mathbb{Q}$.
\emph{TODO from orange notebook, page 36}
\subsection{Cyclotomic polynomials} \label{cyclotomicpoly}
\emph{TODO theory from brown muji notebook, page 82}
\subsubsection{From Elmyn Berlekamp's "Algebraic Coding Theory" book}
The notes in this section are from the book "Algebraic Coding Theory" by Elmyn
Berlekamp \cite{berlekamp}.
\vspace{0.3cm}
Some times we might find polynomials that have the shape of $t^n - 1$, those are \emph{cyclotomic polynomials}, and have some properties that might be useful.
Observe that in a finite field of order $q$, factoring $x^q - x$ gives
$$x^q-x = x(x^{q-1} -1)$$
The factor $x^{q-1} -1$ is a special case of $x^n -1$: if we assume that the
field contains an element $\alpha$ of order $n$, then the roots of $x^n-1=0$ are
$$1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^{n-1}$$
and $\deg(x^n-1)=n$, thus $x^n-1$ has at most $n$ roots in any field, henceforth
the powers of $\alpha$ must include all the $n$-th roots of unity.
There fore, in any field which contains a primitive $n$-th root of unity we have:
\begin{thm}{4.31}
$$x^n -1 = \prod_{i=0}^{n-1} (x - \alpha^i) = \prod_{i=1}^n (x-\alpha^i)$$
\end{thm}
If $n=k \cdot d$, then $\alpha^k, \alpha^{2k}, \alpha^{3k}, \ldots, \alpha^{dk}$ are all roots of $x^d -1 =0$
Every element with order dividing $n$, must be a power of $\alpha$, since an
element of order $d$ is a $d$-th root of unity.
Every power of $\alpha$ has order which divides $n$, and every field element
whose order divides $n$ is a power of $\alpha$. This suggests that we partition
the powers of $\alpha$ according to their orders:
$$x^n -1 = \prod_{\stackrel{d,}{d|n}} \prod_{\beta} (x- \beta)$$
where at each iteration, $\beta$ is a field element of order $d$ for each $d$.
The polynomial whose roots are the field elements of order $d$ is called the
\emph{cyclotomic polynomial}, denoted by $Q^{(d)}(x)$.
\begin{thm}{4.32}
$$x^n -1 = \prod_{\stackrel{d,}{d|n}} Q^{(d)}(x)$$
\end{thm}
\subsubsection{From Ian Stewart's ``Galois Theory'' book}
Notes from Ian Stewart's book \cite{ianstewart}.
Examples:
Consider the case $n=12$, let $\zeta=e^{\pi i /6}$ be a primitive $12$-th root of unity.
Classify its powers ($\zeta^j$) according to their minimal power $d$ such that
$(\zeta^j)^d = 1$ (ie. when they are primitive $d$-th roots of unity).
\begin{enumerate}[]
\item $d=1,~~~ 1$
\item $d=2,~~~ \zeta^6$
\item $d=3,~~~ \zeta^4, \zeta^8$
\item $d=4,~~~ \zeta^3, \zeta^9$
\item $d=6,~~~ \zeta^2, \zeta^{10}$
\item $d=12,~~~ \zeta, \zeta^5, \zeta^7, \zeta^{11}$
\end{enumerate}
Observe that we can factorize $t^{12} -1$ by grouping the corresponding zeros:
\begin{align*}
t^{12}-1 = &(t-1) \times\\
&(t-\zeta^6) \times\\
&(t-\zeta^4) (t-\zeta^8) \times\\
&(t-\zeta^3) (t-\zeta^9) \times\\
&(t-\zeta^2) (t-\zeta^{10}) \times\\
&(t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11})
\end{align*}
which simplifies to
$$t^{12}-1=(t-1)(t+1)(t^2+t+1)(t^2+1)(t^2-t+1)F(t)$$
where $F(t) = (t-\zeta) (t-\zeta^5)(t-\zeta^7) (t-\zeta^{11}) = t^4 -t^2 + 1$ (this last step can be obtained either by multiplying $(t-\zeta)(t-\zeta^5)(t-\zeta^7) (t-\zeta^{11})$ together, or by dividing $t^{12}-1$ by all the other factors).
Let $\Phi_d(t)$ be the factor corresponding to primitive $d$-th roots of unity, then we have proved that
$$t^{12}-1 = \Phi_1 \Phi_2 \Phi_3 \Phi_4 \Phi_6 \Phi_{12}$$
\begin{defn}{21.5}
The polynomial $\Phi_d(t)$ defined by
$$\Phi_n(t) = \prod_{a\in \mathbb{Z}_n,(a,n)=1} (t- \zeta^a)$$
is the $n$-th \emph{cyclotomic polynomial} over \mathbb{C}.
\end{defn}
\begin{cor}{21.6}
$\forall n \in \mathbb{N}$, the polynomial $\Phi_n(t)$ lies in $\mathbb{Z}[t]$ and is monic and irreducible.
\end{cor}
\begin{thm}{21.9}
\begin{enumerate}
\item The Galois group $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q})$ consists of the
$\mathbb{Q}$-automorphisms $\psi_j$ defined by
$$\psi_j(\zeta)=\zeta^j$$
where $0 \leq j \leq n-1$ and $j$ is prime to $n$.
\item $\Gamma(\mathbb{Q}(\zeta):\mathbb{Q}) \stackrel{iso}{\cong} \mathbb{Z}_n^*$, and is an abelian group.
\item its order is $\phi(n)$
\item if $n$ is prime, $\mathbb{Z}_n^*$ is cyclic
\end{thm}
\vspace{1cm}
\subsubsection{Examples}
Examples of cyclotomic polynomials:
\begin{align*}
\Phi_n(x) &= x^{n-1} + x^{n-2} + \ldots + x^2 + x + 1 = \sum_{i=0}^{n-1} x^i\\
@ -210,7 +330,7 @@ Examples:
\subsection{Lemma 1.42 from J.S.Milne's book}
\emph{TODO add reference to Milne's book}
Lemma from J.S.Milne's book \cite{milneFT}.
Useful for when dealing with $x^p - 1$ with $p$ prime.
@ -249,7 +369,7 @@ Properties:
\begin{itemize}
\item are non-abelian (for $n>2$), ie. $rs \neq sr$
\item order $2n$
\item generated by a rotation $r$ and a reflextion $s$
\item generated by a rotation $r$ and a reflection $s$
\item $r^n = s^2 = id,~~~(rs)^2=id$
\end{itemize}
Subgroups of $\mathbb{D}_n$:
@ -281,7 +401,7 @@ For $n \geq 3, ~~\mathbb{D}_n \subseteq \mathbb{S}_n$ (subgroup of the Symmetry
\section{Exercises}
\subsection{Galois groups}
\subsection{Galois groups}\label{ex:galoisgroups}
\subsubsection[t6-7]{$t^6-7 \in \mathbb{Q}$}
@ -364,7 +484,39 @@ $$\begin{aligned}
for $0 \leq k \leq 5$ and $j = \pm 1$.
\vspace{0.5cm}
\emph{TODO diagram}
NOTE: WIP diagram.
\begin{tikzpicture}[node distance=2cm]
\def \radius{2}
\draw (0,0) circle (\radius);
\foreach \k in {0,...,5} {
% \node (a\k) at ({360/6 * \k}:\radius) {$\alpha \zeta^{\k}$};
\node (a\k) at ({360/6 * \k}:\radius+0.5) {$\alpha \zeta^{\k}$};
\fill ({360/6 * \k}:\radius) circle (2pt);
}
% real & im axis
\draw[->] (-2.5,0) -- (2.5,0) node[right] {};
\draw[->] (0,-2.5) -- (0,2.5) node[above] {};
% tau:
\draw[<->] (3,1) -- (3,-1) node[right] {$\tau$};
% sigma:
% \foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} {
% \coordinate (p\k) at ({360/6 * \k}:\radius);
% \coordinate (p\next) at ({360/6 * \next}:\radius);
%
% \draw[->, bend left=30] (p\k.center) -- node[above] {$\sigma$} (p\next.center);
% }
\foreach \k in {0,...,5} {
\coordinate (p\k) at ({360/6 * \k}:\radius);
}
\foreach \k [evaluate=\k as \next using int(mod(\k+1,6))] in {0,...,5} {
\draw[->, bend left=30] (p\k) -- node[above] {$\sigma$} (p\next);
}
\end{tikzpicture}
\vspace{0.5cm}
Observe, that $\Gamma$ is generated by the combination of $\sigma$ and $\tau$,

BIN
notes_ntt.pdf


+ 2
- 2
notes_ntt.tex

@ -34,8 +34,8 @@
The notes are not complete, don't include all the steps neither all the proofs.
An implementation of the NTT can be found at\\
\href{https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs}{https://github.com/arnaucube/fhe-study/blob/main/arithmetic/src/ntt.rs}.
Update: an implementation of the NTT can be found at\\
\href{https://github.com/arnaucube/fhe-study/blob/main/arith/src/ntt.rs}{https://github.com/arnaucube/fhe-study/blob/main/arith/src/ntt.rs}.
\end{abstract}
\tableofcontents

Loading…
Cancel
Save