mirror of
https://github.com/arnaucube/math.git
synced 2026-01-30 15:46:42 +01:00
add missing conclusion at proposition 5.3
This commit is contained in:
@@ -1486,6 +1486,17 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
|
||||
If $J \subseteq m'$, then $\forall~ f \in J$ must vanish at $P$.
|
||||
|
||||
By definition, the set of points where all polynomials in $J$ vanish is the \emph{variety}, $V(J)$.
|
||||
|
||||
\vspace{0.4cm}
|
||||
Thus,\\
|
||||
every maximal ideal in $A$ corresponds to a point $(a_1, \ldots, a_n) \in k^n$, ie.
|
||||
$$m-Spec A \longleftrightarrow k^n$$
|
||||
|
||||
The condition that the ideal belongs to the quotient ring $A=k[X_1, \ldots, X_n]/J$ forces that point to lie in $V(J)$, so
|
||||
\begin{align*}
|
||||
m-Spec A &\longleftrightarrow V(J)\\
|
||||
\text{maximal spectrum} &\longleftrightarrow \text{variety}
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
|
||||
\begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}
|
||||
|
||||
Reference in New Issue
Block a user