add missing conclusion at proposition 5.3

This commit is contained in:
2026-01-25 12:59:52 +01:00
parent 5b80edc1c9
commit 6df4b37939
3 changed files with 12 additions and 0 deletions

View File

@@ -1486,6 +1486,17 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
If $J \subseteq m'$, then $\forall~ f \in J$ must vanish at $P$.
By definition, the set of points where all polynomials in $J$ vanish is the \emph{variety}, $V(J)$.
\vspace{0.4cm}
Thus,\\
every maximal ideal in $A$ corresponds to a point $(a_1, \ldots, a_n) \in k^n$, ie.
$$m-Spec A \longleftrightarrow k^n$$
The condition that the ideal belongs to the quotient ring $A=k[X_1, \ldots, X_n]/J$ forces that point to lie in $V(J)$, so
\begin{align*}
m-Spec A &\longleftrightarrow V(J)\\
\text{maximal spectrum} &\longleftrightarrow \text{variety}
\end{align*}
\end{proof}
\begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}