mirror of
https://github.com/arnaucube/math.git
synced 2026-01-30 15:46:42 +01:00
add missing conclusion at proposition 5.3
This commit is contained in:
1
.github/workflows/typos.toml
vendored
1
.github/workflows/typos.toml
vendored
@@ -3,6 +3,7 @@
|
|||||||
# run: typos -c .github/workflows/typos.toml
|
# run: typos -c .github/workflows/typos.toml
|
||||||
|
|
||||||
[default.extend-words]
|
[default.extend-words]
|
||||||
|
ieal = "ideal"
|
||||||
iddeal = "ideal"
|
iddeal = "ideal"
|
||||||
iddeals = "ideals"
|
iddeals = "ideals"
|
||||||
allpha = "alpha"
|
allpha = "alpha"
|
||||||
|
|||||||
Binary file not shown.
@@ -1486,6 +1486,17 @@ Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue fie
|
|||||||
If $J \subseteq m'$, then $\forall~ f \in J$ must vanish at $P$.
|
If $J \subseteq m'$, then $\forall~ f \in J$ must vanish at $P$.
|
||||||
|
|
||||||
By definition, the set of points where all polynomials in $J$ vanish is the \emph{variety}, $V(J)$.
|
By definition, the set of points where all polynomials in $J$ vanish is the \emph{variety}, $V(J)$.
|
||||||
|
|
||||||
|
\vspace{0.4cm}
|
||||||
|
Thus,\\
|
||||||
|
every maximal ideal in $A$ corresponds to a point $(a_1, \ldots, a_n) \in k^n$, ie.
|
||||||
|
$$m-Spec A \longleftrightarrow k^n$$
|
||||||
|
|
||||||
|
The condition that the ideal belongs to the quotient ring $A=k[X_1, \ldots, X_n]/J$ forces that point to lie in $V(J)$, so
|
||||||
|
\begin{align*}
|
||||||
|
m-Spec A &\longleftrightarrow V(J)\\
|
||||||
|
\text{maximal spectrum} &\longleftrightarrow \text{variety}
|
||||||
|
\end{align*}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}
|
\begin{prop}{5.5}[Correspondeces $V$ and $I$] \label{5.5}
|
||||||
|
|||||||
Reference in New Issue
Block a user