@ -720,16 +730,16 @@ is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
\end{align*}
\end{align*}
\item$\exists$ a \emph{section} of $\beta$, that is, a map $s: N \longrightarrow M$ such that $\beta\circ s = id_N$
\item$\exists$ a \emph{section} of $\beta$, that is, a map $s: N \longrightarrow M$ such that $\beta\circ s = id_N$
\item$\exists$ a \emph{retraction} of $\alpha$, that is, a map $r: M \longrightarrow L$ such that $r \circ\allpha= id_L$
\item$\exists$ a \emph{retraction} of $\alpha$, that is, a map $r: M \longrightarrow L$ such that $r \circ\alpha= id_L$
\end{enumerate}
\end{enumerate}
If all i, ii, iii are satisfied, it is a split exact sequence.
If all i, ii, iii are satisfied, it is a split exact sequence.
\end{prop}
\end{prop}
\begin{proof}
\begin{proof}
Intuitively, when a s.e.s. \emph{splits} it means that the middle module $M$ is the direct sum of the other (outter) two modules, ie. $M = L \oplus N$.
Intuitively, when a s.e.s. \emph{splits} it means that the middle module $M$ is the direct sum of the other (outer) two modules, ie. $M = L \oplus N$.
\begin{itemize}
\begin{itemize}
\item[(i \Longrightarrow ii, iii)]
\item[(i to ii, iii)]
if $M \cong L \oplus N$ such that $\alpha:~ m \longmapsto(m,0),~~ \beta:~ s(m, n)\longmapsto n$, we can define the maps
if $M \cong L \oplus N$ such that $\alpha:~ m \longmapsto(m,0),~~ \beta:~ s(m, n)\longmapsto n$, we can define the maps
for ii:
for ii:
@ -748,7 +758,7 @@ is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
Then $r(\alpha(m))=r(m,0)$, so $r \circ\alpha= id_L$.
Then $r(\alpha(m))=r(m,0)$, so $r \circ\alpha= id_L$.
\item[(ii \Longrightarrow i)]
\item[(ii to i)]
assume $s: N \longrightarrow M$ such that $\beta\circ s = id_M$
assume $s: N \longrightarrow M$ such that $\beta\circ s = id_M$
Want to show $M \cong im(\alpha)\oplus im(s)$.
Want to show $M \cong im(\alpha)\oplus im(s)$.
@ -773,7 +783,7 @@ is exact $\Longleftrightarrow~ L \subset M$ and $N=M / L$.
\end{align*}
\end{align*}
This isomorphism satisfies the required conditions.
This isomorphism satisfies the required conditions.
\item[(iii \Longrightarrow i)] similar to the previous one.
\item[(iii to i)] similar to the previous one.
\end{itemize}
\end{itemize}
\vspace{0.3cm}
\vspace{0.3cm}
@ -820,8 +830,8 @@ $\Longrightarrow~ \Sigma$ has the a.c.c. iff every non-empty subset $S \subset \
\item the set $\Sigma$ of ideals of $A$ has the a.c.c.; in other words, every increasing chain of ideals
\item the set $\Sigma$ of ideals of $A$ has the a.c.c.; in other words, every increasing chain of ideals
if $m\in M_2$, then $\beta(m)\in\beta(M_1)=\beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(m)$.
if $m\in M_2$, then $\beta(m)\in\beta(M_1)=\beta(M_2)$, so that there is an $n \in M_1$ such that $\beta(m)=\beta(n)$.
Then $\beta(m-n)=0$, so that
Then $\beta(m-n)=0$, so that
$$m - n \in M_2\cap ker(\beta)=M_1\cap ker(\beta)$$
$$m - n \in M_2\cap ker(\beta)=M_1\cap ker(\beta)$$
@ -916,7 +926,7 @@ The exercises that start with \textbf{R} are the ones from the book \cite{reid},
Let
Let
$$\psi^{-1}(P)=\{ a \in A | \psi(a)\in P \}= A \cap P$$
$$\psi^{-1}(P)=\{ a \in A | \psi(a)\in P \}= A \cap P$$
The claim is that $\psi^{-1}(P)$ is prime iddeal of $A$.
The claim is that $\psi^{-1}(P)$ is prime ideal of $A$.
\begin{enumerate}[i.]
\begin{enumerate}[i.]
\item show that $\psi^{-1}(P)$ is an ideal of $A$:\\
\item show that $\psi^{-1}(P)$ is an ideal of $A$:\\
@ -1104,6 +1114,53 @@ The exercises that start with \textbf{R} are the ones from the book \cite{reid},
\subsection{Exercises Chapter 2}
\subsection{Exercises Chapter 2}
\begin{ex}{R.2.9}
$0\longrightarrow L \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} N \longrightarrow0$ is a s.e.s. of $A$-modules. Prove that if $N, L$ are finite over $A$, then $M$ is finite over $A$.
\end{ex}
\begin{proof}
Denote the generators of $L$ and $N$ respectively as
\begin{align*}
\{l_1, \ldots, l_k \}&\subseteq L\\
\{n_1, \ldots, n_p \}&\subseteq N
\end{align*}
By s.e.s. definition,
\begin{itemize}
\item[-]$\alpha$ is injective (one-to-one), so
$$\forall l_i \in L,~ \exists~ x_i \in M ~\text{s.th.}~ \alpha(l_i)=x_i$$
\item[-]$\beta$ is surjective (onto), so
$$\forall n_j \in N,~ \exists~ y_j \in M ~\text{s.th.}~ \beta(y_j)=n_j$$
\end{itemize}
We will show that $\{x_1, \ldots, x_k, y_1, \ldots, y_p \}$ generate $M$, and thus $M$ is finite:
So, $L$ provides $k$ generators for the kernel part of $M$, $N$ provides $p$ "lifts" for the quotient part of $M$; thus $M$ is generated by $k+p$ elements.\\