@ -193,7 +193,7 @@
[...] TODO: pending to add key parts up to Chapter 15.
[...] TODO: pending to add key parts up to Chapter 15.
\subsection { Detour: Isomorphism Theorems}
\subsection { Detour: Isomorphism Theorems}
\begin { thm} { } (\emph { First Isomorphism Theorem} ) \label { 1stisothm}
\begin { thm} { i.1 } (\emph { First Isomorphism Theorem} ) \label { 1stisothm}
\begin { minipage} { 0.75\textwidth }
\begin { minipage} { 0.75\textwidth }
If $ \psi : G \longrightarrow H $ a group homomorphism, then $ ker ( \psi ) \triangleleft G $ .\\
If $ \psi : G \longrightarrow H $ a group homomorphism, then $ ker ( \psi ) \triangleleft G $ .\\
@ -263,7 +263,7 @@
\end { proof}
\end { proof}
\begin { thm} { } (\emph { Second Isomorphism Theorem} ) \label { 2ndisothm}
\begin { thm} { i.2 } (\emph { Second Isomorphism Theorem} ) \label { 2ndisothm}
Let $ H \subseteq G $ , $ N \triangleleft G $ . Then
Let $ H \subseteq G $ , $ N \triangleleft G $ . Then
\begin { enumerate} [i.]
\begin { enumerate} [i.]
\item $ HN \subseteq G $
\item $ HN \subseteq G $
@ -329,7 +329,7 @@
\end { proof}
\end { proof}
\begin { thm} { } (\emph { Third Isomorphism Theorem} ) \label { 2ndisothm} \\
\begin { thm} { i.3 } (\emph { Third Isomorphism Theorem} ) \label { 2ndisothm} \\
Let $ H \subseteq K $ and $ K \triangleleft G,~ H \triangleleft G $ .\\
Let $ H \subseteq K $ and $ K \triangleleft G,~ H \triangleleft G $ .\\
Then
Then
$ \frac { K } { H } \triangleleft \frac { G } { H } $
$ \frac { K } { H } \triangleleft \frac { G } { H } $
@ -388,6 +388,74 @@
\subsection { Chapter 14}
\subsection { Chapter 14}
\begin { thm} { 14.4}
$ H \subseteq G,~~ N \triangleleft G $ , then
\begin { enumerate}
\item if $ G $ soluble $ \Longrightarrow H $ soluble
\item if $ G $ soluble $ \Longrightarrow G / N $ soluble
\item if $ N $ and $ G / N $ soluble $ \Longrightarrow G $ soluble
\end { enumerate}
\end { thm}
\begin { proof}
\begin { enumerate}
\item Since $ G $ soluble, by definition: $ \exists ~~ 1 = G _ 0 \triangleleft G _ 1 \triangleleft \ldots \triangleleft G _ r = G $ with Abelian quotients $ \frac { G _ { i + 1 } } { G _ i } $ .
Let $ H _ i = G _ i \cap H $ , then $ H $ has a series $ 1 = H _ 0 \triangleleft H _ 1
\triangleleft \ldots \triangleleft H_ r = H$ , next we show that the
quotients $ \frac { H _ { i + 1 } } { H _ i } $ are Abelian (so that H is soluble):
$$ \frac { H _ { i + 1 } } { H _ i } = \frac { G _ { i + 1 } \cap H } { G _ i \cap H } \stackrel { ( * ) } { = } \frac { G _ { i + 1 } \cap H } { G _ i \cap ( G _ { i + 1 } \cap H ) }
\stackrel { (**)} { \cong } \frac { G_ i(G_ { i+1} \cap H)} { G_ i} \subseteq \frac { G_ { i+1} } { G_ i}
$$
(*): to see why, $ H _ i = G _ i \cap H = G _ i \cap H _ i = G _ i \cap H _ { i + 1 } = G _ i \cap ( G _ { i + 1 } \cap H ) $ .
(**): by the 2nd Isomorphism Theorem (\ref { 2ndisothm} ).
[TODO: diagram of subgroups]
Notice that $ \frac { G _ { i + 1 } } { G _ i } $ is Abelian, thus the left-hand-side of the congruence is also Abelian.
Therefore, $ \frac { H _ { i + 1 } } { H _ i } $ is Abelian, thus $ H $ is soluble.
\item For $ G / N $ to be soluble, (by definition) it would have the series $ \frac { N } { N } = G _ 0 \frac { N } { N } \triangleleft G _ 1 \frac { N } { N } \triangleleft \ldots \triangleleft G _ r \frac { N } { N } = \frac { G } { N } $ ,
and any quotient being $ \frac { G _ { i + 1 } \frac { N } { N } } { G _ i \frac { N } { N } } $ .
The series clearly exists, so now we show that the quotients are Abelian, so that $ G / N $ is soluble:
$$
\frac { G_ { i+1} N} { G_ i N} = \frac { G_ { i+1} (G_ i N)} { G_ i N} \stackrel { *} { \cong }
\frac { G_ { i+1} } { G_ { i+1} \cap (G_ i N)} \cong \frac { G_ { i+1} /G_ i} { (G_ { i+1}
\cap (G_ i N))/G_ i}
$$
(*): by the 2nd Isomorphism Theorem (\ref { 2ndisothm} ).
The last quotient is a quotient of the Abelian group $ G _ { i + 1 } / G _ i $ , so it is Abelian.
Hence, $ \frac { G _ { i + 1 } N } { G _ i N } $ is also Abelian; so $ \frac { G } { N } $ is soluble.
\item
By the definition of $ N $ and $ G / N $ being soluble,
\begin { align*}
N \text { soluble} \Longrightarrow ~~ 1 & = N_ 0 \triangleleft N_ 1 \triangleleft \ldots \triangleleft N_ r = N\\
G/N \text { soluble} \Longrightarrow ~~ 1= \frac { N} { N} & = \frac { G_ 0} { N} \triangleleft \frac { G_ 1} { N} \triangleleft \ldots \triangleleft \frac { G_ r} { N} = \frac { G} { N}
\end { align*}
both with Abelian quotients.
Consider the series of $ G $ given by combining the two previous series:
$$
1 & = N_ 0 \triangleleft N_ 1 \triangleleft \ldots \triangleleft N_ r = N = G_ 0 \triangleleft G_ 1 \triangleleft \ldots \triangleleft G_ r = G
$$
the quotients are either
\begin { itemize}
\item $ \frac { N _ { i + 1 } } { N _ i } $ , Abelian
\item $ \frac { G _ { i + 1 } } { G _ i } $ , isomorphic to $ \frac { G _ { i + 1 } / N } { G _ i / N } $ ,
which is Abelian.
\end { itemize}
\end { enumerate}
Therefore, the quotients are always Abelian; hence $ G $ is soluble.
\end { proof}
\newpage
\newpage
\section { Tools}
\section { Tools}