mirror of
https://github.com/arnaucube/math.git
synced 2026-01-10 16:01:31 +01:00
weil-pairing.tex add rational functions & divisors section
This commit is contained in:
@@ -109,7 +109,7 @@ where R1CS set $E=0,~u=1$.
|
||||
\begin{align*}
|
||||
Az \circ Bz &= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\
|
||||
&= (u_1 C z_1 + E_1) + r (A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (u_2 C z_2 + E_2)\\
|
||||
&= u_1 C z_1 + \underbrace{E_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 E_2}_\text{E} + r^1 u_2 C z_2\\
|
||||
&= u_1 C z_1 + \underbrace{E_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 E_2}_\text{E} + r^2 u_2 C z_2\\
|
||||
&= u_1 C z_1 + r^2 u_2 C z_2 + E\\
|
||||
&= (u_1 + r u_2) \cdot C \cdot (z_1 + r z_2) + E\\
|
||||
&= uCz + E
|
||||
@@ -151,7 +151,7 @@ Let $Z_1 = (W_1, x_1, u_1)$ and $Z_2 = (W_2, x_2, u_2)$.
|
||||
% \paragraph{Protocol}
|
||||
\begin{enumerate}
|
||||
\item P send $\overline{T} = Com(T, r_T)$,\\
|
||||
where $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_2 - u_2 C z_2$\\
|
||||
where $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_1 - u_2 C z_2$\\
|
||||
and rand $r_T \in \mathbb{F}$
|
||||
\item V sample random challenge $r \in \mathbb{F}$
|
||||
\item V, P output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$
|
||||
|
||||
Reference in New Issue
Block a user