mirror of
https://github.com/arnaucube/math.git
synced 2026-01-11 16:31:32 +01:00
Add Caulk initial notes
This commit is contained in:
@@ -4,6 +4,7 @@
|
||||
\usepackage{amsthm}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{enumerate}
|
||||
\usepackage{hyperref}
|
||||
\hypersetup{
|
||||
@@ -28,7 +29,7 @@
|
||||
{\endinnersolution}
|
||||
|
||||
|
||||
\title{Bilinear Pairings - study}
|
||||
\title{Weil Pairing - study}
|
||||
\author{arnaucube}
|
||||
\date{August 2022}
|
||||
|
||||
@@ -44,9 +45,7 @@
|
||||
|
||||
\tableofcontents
|
||||
|
||||
\section{Weil reciprocity}
|
||||
|
||||
\section{Generic Weil Pairing}
|
||||
\section{Divisors and rational functions}
|
||||
|
||||
\begin{definition}{Divisor}
|
||||
$$D= \sum_{P \in E(\mathbb{K})} n_p \cdot [P]$$
|
||||
@@ -67,21 +66,77 @@ $D \sim D'$ iff $D - D'$ is principal.
|
||||
$$r(D)= \prod r(P)^{n_p}$$
|
||||
\end{definition}
|
||||
|
||||
\subsection{Generic Weil Pairing}
|
||||
\section{Weil reciprocity}
|
||||
\begin{theorem}{(Weil reciprocity)}
|
||||
Let $E/ \mathbb{K}$ be an e.c. over an alg. closed field. If $r,~s \in \mathbb{K}\setminus \{0\}$ are rational functions whose divisors have disjoint support, then
|
||||
$$r(div(s)) = s(div(r))$$
|
||||
\end{theorem}
|
||||
Proof. (todo)
|
||||
|
||||
\section{Generic Weil Pairing}
|
||||
Let $E(\mathbb{K})$, with $\mathbb{K}$ of char $p$, $n$ s.t. $p \nmid n$.
|
||||
|
||||
$\mathbb{K}$ large enough: $E(\mathbb{K})[n] = E(\mathbb{\overline{K}}) = \mathbb{Z}_n \oplus \mathbb{Z}_n$ (with $n^2$ elements).
|
||||
|
||||
$P, Q \in E[n]$:
|
||||
$$D_P \sim [P] - [0]$$
|
||||
$$D_Q \sim [Q] - [0]$$
|
||||
For $P, Q \in E[n]$,
|
||||
\begin{align*}
|
||||
D_P &\sim [P] - [0]\\
|
||||
D_Q &\sim [Q] - [0]
|
||||
\end{align*}
|
||||
|
||||
We need them to have disjoint support:
|
||||
$$D_P \sim [P] - [0]$$
|
||||
$$D_Q \sim [Q+T] - [T]$$
|
||||
\begin{align*}
|
||||
D_P &\sim [P] - [0]\\
|
||||
D_Q' &\sim [Q+T] - [T]
|
||||
\end{align*}
|
||||
|
||||
$$\Delta D = D_Q - D_Q' = [Q] - [0] - [Q+T] + [T]$$
|
||||
|
||||
|
||||
Note that $n D_P$ and $n D_Q$ are principal. Proof:
|
||||
\begin{align*}
|
||||
n D_P &= n [P] - n [O]\\
|
||||
deg(n D_P) &= n - n = 0\\
|
||||
sum(n D_P) &= nP - nO = 0
|
||||
\end{align*}
|
||||
($nP = 0$ bcs. $P$ is n-torsion)
|
||||
|
||||
Since $n D_P,~ n D_Q$ are principal, we know that $f_P,~ f_Q$ exist.
|
||||
|
||||
Take
|
||||
\begin{align*}
|
||||
f_P &: div(f_P) = n D_P\\
|
||||
f_Q &: div(f_Q) = n D_Q
|
||||
\end{align*}
|
||||
|
||||
We define
|
||||
$$
|
||||
e_n(P, Q) = \frac{f_P(D_Q)}{f_Q(D_P)}
|
||||
$$
|
||||
|
||||
Remind: evaluation of a rational function over a divisor $D$:
|
||||
\begin{align*}
|
||||
D &= \sum n_P [P]\\
|
||||
r(D) &= \prod r(P)^{n_P}
|
||||
\end{align*}
|
||||
|
||||
If $D_P = [P+S] - [S],~~ D_Q=[Q-T]-[T]$ what is $e_n(P, Q)$?
|
||||
|
||||
\begin{align*}
|
||||
f_P(D_Q) &= f_P(Q+T)^1 \cdot f_P(T)^{-1}\\
|
||||
f_Q(D_P) &= f_Q(P+S)^1 \cdot f_Q(S)^{-1}
|
||||
\end{align*}
|
||||
|
||||
$$
|
||||
e_n(P, Q) = \frac{f_P(Q+T)}{f_P(T)} / \frac{f_Q(P+S)}{f_Q(S)}
|
||||
$$
|
||||
|
||||
with $S \neq \{O, P, -Q, P-Q \}$.
|
||||
|
||||
|
||||
\section{Properties}
|
||||
|
||||
|
||||
\section{Exercises}
|
||||
\emph{An Introduction to Mathematical Cryptography, 2nd Edition} - Section 6.8. Bilinear pairings on elliptic curves
|
||||
|
||||
|
||||
Reference in New Issue
Block a user