Browse Source

add ccs-plonk.sage

Also rename r1cs-ccs.sage to ccs-r1cs.sage, so both r1cs & plonk scripts
are printed together in the directory.
master
arnaucube 1 year ago
parent
commit
a40e9b6cc4
2 changed files with 127 additions and 0 deletions
  1. +127
    -0
      ccs-plonk.sage
  2. +0
    -0
      ccs-r1cs.sage

+ 127
- 0
ccs-plonk.sage

@ -0,0 +1,127 @@
# Plonk-CCS (https://eprint.iacr.org/2023/552) Sage prototype
# utils
def matrix_vector_product(M, v):
n = M.nrows()
r = [F(0)] * n
for i in range(0, n):
for j in range(0, M.ncols()):
r[i] += M[i][j] * v[j]
return r
def hadamard_product(a, b):
n = len(a)
r = [None] * n
for i in range(0, n):
r[i] = a[i] * b[i]
return r
def vec_add(a, b):
n = len(a)
r = [None] * n
for i in range(0, n):
r[i] = a[i] + b[i]
return r
def vec_elem_mul(a, s):
r = [None] * len(a)
for i in range(0, len(a)):
r[i] = a[i] * s
return r
# end of utils
# can use any finite field, using a small one for the example
F = GF(101)
# F = GF(21888242871839275222246405745257275088696311157297823662689037894645226208583)
# The following CCS instance values have been provided by Carlos
# (https://github.com/CPerezz) and Edu (https://github.com/ed255),
# and this sage script was made to check the CCS relation.
## Checks performed by this Plonk/CCS instance:
# - binary check for x0, x1
# - 2*x2 + 2*x3 == x4
M0 = matrix([
[F(0), 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1],
])
M1 = matrix([
[F(0), 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1],
])
M2 = matrix([
[F(0), 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1],
])
M3 = matrix([
[F(1), 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
])
M4 = matrix([
[F(0), 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[2, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
])
M5 = matrix([
[F(0), 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[2, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
])
M6 = matrix([
[F(-1), 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
])
M7 = matrix([
[F(0), 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
])
z = [F(1), 0, 1, 2, 3, 10, 42]
print("z:", z)
assert len(z) == M0.ncols()
# CCS parameters
n = M0.ncols() # == len(z)
m = M0.nrows()
t=8
q=5
d=3
S = [[3,0,1], [4,0], [5,1], [6,2], [7]]
c = [1, 1, 1, 1, 1]
M = [M0,M1,M2,M3,M4,M5,M6,M7]
print("CCS values:")
print("n: %s, m: %s, t: %s, q: %s, d: %s" % (n, m, t, q, d))
print("M:", M)
print("z:", z)
print("S:", S)
print("c:", c)
# check CCS relation (this is agnostic to Plonk, for any CCS instance)
r = [F(0)] * m
for i in range(0, q):
hadamard_output = [F(1)]*m
for j in S[i]:
hadamard_output = hadamard_product(hadamard_output,
matrix_vector_product(M[j], z))
r = vec_add(r, vec_elem_mul(hadamard_output, c[i]))
print("\nCCS relation check (∑ cᵢ ⋅ ◯ Mⱼ z == 0):", r == [0]*m)
assert r == [0]*m

r1cs-ccs.sage → ccs-r1cs.sage


Loading…
Cancel
Save