mirror of
https://github.com/arnaucube/math.git
synced 2026-01-30 15:46:42 +01:00
5.1, Corollary 5.2
This commit is contained in:
@@ -1338,7 +1338,7 @@ Recall: a $K$-algebra $A$ is fingen over $K$ if $A=K[y_1, \ldots, y_n]$ for some
|
||||
thus there exists inverse in $A$, so $A$ is a field too.
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}{R.4.10}[Weak Nullstellensatz - Zariski's lemma]
|
||||
\begin{thm}{R.4.10}[Weak Nullstellensatz - Zariski's lemma] \label{zariski}
|
||||
let $k$ a field, $K$ a $k$-algebra which
|
||||
\begin{enumerate}
|
||||
\item is finitely generated as a $k$-algebra
|
||||
@@ -1372,6 +1372,42 @@ Recall: a $K$-algebra $A$ is fingen over $K$ if $A=K[y_1, \ldots, y_n]$ for some
|
||||
\end{proof}
|
||||
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
\section{Nullstellensatz}
|
||||
|
||||
Note: for $k$ a field, $k[X_1, \ldots, X_n]$, $m$ maximal ideal; the residue field $K=k[X_1, \ldots, X_n]/m$ satisfies the Zariski's lemma (\ref{zariski}), thus $K$ is a finite algebraic extension of $k$.
|
||||
|
||||
\vspace{0.3cm}
|
||||
\begin{cor}{5.2} \label{5.2}
|
||||
$k$ algebraically closed. Then every maximal ideal of $A = k[X_1, \ldots,
|
||||
X_n]$ is of the form
|
||||
$$m = (X_1 - a_1, \ldots, X_n -a_n),~~ a_i \in k$$
|
||||
|
||||
The map $k[X_1, \ldots, X_n] \longrightarrow k[X_1, \ldots, X_n]/m=k$ is the natural evaluation map $f(X_1, \ldots, X_n) \longmapsto f(a_1, \ldots, a_n)$.
|
||||
|
||||
Thus
|
||||
\begin{align*}
|
||||
k^n &\longleftrightarrow m-Spec A\\
|
||||
(a_1, \ldots, a_n) &\longleftrightarrow f(a_1, \ldots, a_n)
|
||||
\end{align*}
|
||||
\end{cor}
|
||||
\begin{proof}
|
||||
let $m \subset k[X_1, \ldots, X_n]$ be a maximal ideal.
|
||||
|
||||
By fundamental property of maximal ideals, $K=A/m$ is a field.
|
||||
|
||||
Since $A$ is a fingen $k$-algebra (generated by $X_1, \ldots, X_n$), then $K=A/m$ is also a fingen $k$-algebra, generated by residues $x_i' = x_i +m$.
|
||||
|
||||
By Zariski's lemma (\ref{zariski}), $K=A/m$ is algeraic over $k$.
|
||||
|
||||
Since by hypothesis $k$ is algebraically closed, it has no proper algebraic extensions\\
|
||||
\hspace*{2em} $\Longrightarrow~~ K=k~~ \Longrightarrow~~ k \cong A/m$.
|
||||
|
||||
So, $\forall x_i \in k$, its image in the quotient field $A/m$ must be an element of $k$.
|
||||
$$\Longrightarrow x_i'=a_i \in k, ~\forall i \in [n]$$
|
||||
$$\Longrightarrow x_i - a_i \in m$$
|
||||
\end{proof}
|
||||
|
||||
|
||||
\newpage
|
||||
|
||||
Reference in New Issue
Block a user