@ -179,12 +179,21 @@
\end { defn}
\subsection { Lemmas, propositions and corollaries}
\begin { thm} { AM.1.X} { Zorn's lemma} \label { zorn}
TODO
\end { thm}
Let $ \Sigma $ be a partially orddered set. Given subset $ S \subset \Sigma $ , an \emph { upper bound} of $ S $ is an element $ u \in \Sigma $ such that $ s<u \forall s \in S $ .
A \emph { maximal element} of $ \Sigma $ , is $ m \in \Sigma $ such that $ m<s $ does not hold for any $ s \in \Sigma $ .
A subset $ S \subset \Sigma $ is \emph { totally ordered} if for every pair $ s _ 1 ,s _ 2 \in S $ , either $ s _ 1 \leq s _ 2 $ or $ s _ 2 \leq s _ 1 $ .
\begin { lemma} { R.1.7} { Zorn's lemma} \label { zorn}
suppose $ \Sigma $ a nonempty partially ordered set (ie. we are given a relation $ x \leq y $ on $ \Sigma $ ), and that any totally ordered subset $ S \subset \Sigma $ has an upper bound in $ \Sigma $ .
Then $ \Sigma $ has a maximal element.
\end { lemma}
\begin { thm} { AM.1.3} \label { 1.3}
Every ring $ A \neq 0 $ has at lleast one maximal ideal.
Every ring $ A \neq 0 $ has at least one maximal ideal.
\end { thm}
\begin { proof}
By Zorn's lemma \ref { zorn} .
@ -293,18 +302,30 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
Observe that each row equals $ 0 $ , and rearranging the elements at each row we get
\begin { align*}
$$
\left .
\begin { aligned}
& \psi (x_ 1) - (a_ { 1,1} x_ 1 + a_ { 1,2} x_ 2 + \ldots + a_ { 1,n} x_ n) = 0\\
& \psi (x_ 2) - (a_ { 2,1} x_ 1 + a_ { 2,2} x_ 2 + \ldots + a_ { 2,n} x_ n) = 0\\
& \ldots \\
& \psi (x_ n) - (a_ { n,1} x_ 1 + a_ { n,2} x_ 2 + \ldots + a_ { n,n} x_ n) = 0
\end { align*}
\end { aligned}
\right \}
$$
Then, group the $ x _ i $ terms together; as example, take the row $ i = 1 $ :
$$ ( \psi - a _ { 1 , 1 } ) x _ 1 - a _ { 1 , 2 } x _ 2 - \ldots - a _ { 1 ,n } x _ n = 0 $$
for $ i = 2 $ :
$$ - a _ { 2 , 1 } x _ 1 + ( \psi - a _ { 2 , 2 } ) x _ 2 - \ldots - a _ { 2 ,n } x _ n = 0 $$
$$
\left .
\begin { aligned}
& ~~~~(\psi - a_ { 1,1} )x_ 1 - a_ { 1,2} x_ 2 - \ldots - a_ { 1,n} x_ n = 0\\
& -a_ { 2,1} x_ 1 + (\psi - a_ { 2,2} ) x_ 2 - \ldots - a_ { 2,n} x_ n = 0\\
& \ldots \\
& -a_ { 1,1} x_ 1 - a_ { 1,2} x_ 2 - \ldots + (\psi - a_ { 1,n} ) x_ n = 0\\
\end { aligned}
\right \}
$$
So, $ \forall i \in [ n ] $ , as a matrix:
@ -338,18 +359,18 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
adj(\Phi ) \Phi = det(\Phi ) I
\label { eq:2.4.2}
\end { equation}
(aka. fundamental identity for the adjugate matrix).
(aka. \emph { fundamental identity for the adjugate matrix} ).
So if at \eqref { eq:2.4.1} we multiply both sides by $ adj ( \Phi ) $ ,
\begin { align*}
adj(\Phi ) \cdot \Phi \cdot & m = 0\\
(\text { recall from \eqref { eq:2.4.2} :} ~ & det(\Phi )\cdot I ~)\\
(\text { recall from \eqref { eq:2.4.2} :} ~ & adj(\Phi )\Phi = det(\Phi )\cdot I ~)\\
=det(\Phi ) \cdot I \cdot & m = 0
\end { align*}
Thus,
\begin { align*}
det(\Phi ) \cdot I \cdot & m = 0\\
det(\Phi ) \cdot I \cdot & m = 0: \\
\begin { pmatrix}
det(\Phi ) & 0 & \ldots & 0\\
0 & det(\Phi ) & \ldots & 0\\
@ -372,7 +393,8 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\label { eq:2.4.3}
\end { equation}
ie. $ det ( \Phi ) $ is an \emph { annihilator} of the generators $ x _ i $ of $ M $ , thus of the entire module $ M $ .
ie. $ det ( \Phi ) $ is an \emph { annihilator} of the generators $ x _ i $ of $ M $ , thus
is an annihilator of the entire module $ M $ .
So, we're interested into calculating the $ det ( \Phi ) $ .
@ -391,7 +413,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
\item the rest of coefficients of $ \psi ^ k $ are also elements in $ \aA $
\end { itemize}
So we have
Therefore we have
$$ det ( \Phi ) = \psi ^ n + a _ 1 \psi ^ { n - 1 } + a _ 2 \psi ^ { n - 2 } + \ldots + a _ { n - 1 } \psi + a _ n $$
with $ a _ i \in \aA $ .
@ -399,22 +421,6 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
Now, notice that we had $ det ( \Phi ) \cdot x _ i = 0 ~ \forall ~ i \in [ n ] $ .
% next part might be removed
Since $ M $ is a fingen $ A $ -module, any element $ m \in M $ can be written as a linear combination of $ M $ 's generators $ x _ i $ , ie.
$$ m = r _ 1 x _ 1 + r _ 2 x _ 2 + \ldots r _ n x _ n \in M $$
If we multiply $ m \in M $ by $ d = det ( \Phi ) $ ,
\begin { align*}
d \cdot m & = d \cdot (r_ 1 x_ 1 + r_ 2 x_ 2 + \ldots r_ n x_ n)\\
& = r_ 1(d \cdot x_ 1) + r_ 2 (d \cdot x_ 2) + \ldots + r_ n (d \cdot x_ n)\\
(\text { every} ~ & d \cdot x_ i = det(\Phi )x_ i = 0 ~\forall ~ i)\\
& = r_ 1 (0) + \ldots + r_ n (0)\\
& = 0
\end { align*}
Therefore, $ det ( \Phi ) \cdot m = 0 $ .
% end of might be removed
The matrix $ \Phi $ is the \emph { characteristic matrix} , $ xI - A $ , viewed as an operator. Then,
$$ det ( \Phi ) = det ( xI - A ) = p ( x ) $$
where $ p ( x ) $ is the \emph { characteristic polynomial} .