mirror of
https://github.com/arnaucube/math.git
synced 2026-01-30 15:46:42 +01:00
polishing
This commit is contained in:
Binary file not shown.
@@ -179,12 +179,21 @@
|
|||||||
\end{defn}
|
\end{defn}
|
||||||
|
|
||||||
\subsection{Lemmas, propositions and corollaries}
|
\subsection{Lemmas, propositions and corollaries}
|
||||||
\begin{thm}{AM.1.X}{Zorn's lemma} \label{zorn}
|
|
||||||
TODO
|
Let $\Sigma$ be a partially orddered set. Given subset $S \subset \Sigma$, an \emph{upper bound} of $S$ is an element $u \in \Sigma$ such that $s<u \forall s \in S$.
|
||||||
\end{thm}
|
|
||||||
|
A \emph{maximal element} of $\Sigma$, is $m \in \Sigma$ such that $m<s$ does not hold for any $s \in \Sigma$.
|
||||||
|
|
||||||
|
A subset $S \subset \Sigma$ is \emph{totally ordered} if for every pair $s_1,s_2 \in S$, either $s_1 \leq s_2$ or $s_2 \leq s_1$.
|
||||||
|
|
||||||
|
\begin{lemma}{R.1.7}{Zorn's lemma} \label{zorn}
|
||||||
|
suppose $\Sigma$ a nonempty partially ordered set (ie. we are given a relation $x \leq y$ on $\Sigma$), and that any totally ordered subset $S \subset \Sigma$ has an upper bound in $\Sigma$.
|
||||||
|
|
||||||
|
Then $\Sigma$ has a maximal element.
|
||||||
|
\end{lemma}
|
||||||
|
|
||||||
\begin{thm}{AM.1.3} \label{1.3}
|
\begin{thm}{AM.1.3} \label{1.3}
|
||||||
Every ring $A \neq 0$ has at lleast one maximal ideal.
|
Every ring $A \neq 0$ has at least one maximal ideal.
|
||||||
\end{thm}
|
\end{thm}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
By Zorn's lemma \ref{zorn}.
|
By Zorn's lemma \ref{zorn}.
|
||||||
@@ -293,18 +302,30 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
|
|||||||
|
|
||||||
Observe that each row equals $0$, and rearranging the elements at each row we get
|
Observe that each row equals $0$, and rearranging the elements at each row we get
|
||||||
|
|
||||||
\begin{align*}
|
$$
|
||||||
|
\left.
|
||||||
|
\begin{aligned}
|
||||||
&\psi(x_1) - (a_{1,1} x_1 + a_{1,2} x_2 + \ldots + a_{1,n} x_n) = 0\\
|
&\psi(x_1) - (a_{1,1} x_1 + a_{1,2} x_2 + \ldots + a_{1,n} x_n) = 0\\
|
||||||
&\psi(x_2) - (a_{2,1} x_1 + a_{2,2} x_2 + \ldots + a_{2,n} x_n) = 0\\
|
&\psi(x_2) - (a_{2,1} x_1 + a_{2,2} x_2 + \ldots + a_{2,n} x_n) = 0\\
|
||||||
&\ldots\\
|
&\ldots\\
|
||||||
&\psi(x_n) - (a_{n,1} x_1 + a_{n,2} x_2 + \ldots + a_{n,n} x_n) = 0
|
&\psi(x_n) - (a_{n,1} x_1 + a_{n,2} x_2 + \ldots + a_{n,n} x_n) = 0
|
||||||
\end{align*}
|
\end{aligned}
|
||||||
|
\right\}
|
||||||
|
$$
|
||||||
|
|
||||||
Then, group the $x_i$ terms together; as example, take the row $i=1$:
|
Then, group the $x_i$ terms together; as example, take the row $i=1$:
|
||||||
$$(\psi - a_{1,1})x_1 - a_{1,2} x_2 - \ldots - a_{1,n} x_n = 0$$
|
$$(\psi - a_{1,1})x_1 - a_{1,2} x_2 - \ldots - a_{1,n} x_n = 0$$
|
||||||
|
|
||||||
for $i=2$:
|
$$
|
||||||
$$-a_{2,1} x_1 + (\psi - a_{2,2}) x_2 - \ldots - a_{2,n} x_n = 0$$
|
\left.
|
||||||
|
\begin{aligned}
|
||||||
|
&~~~~(\psi - a_{1,1})x_1 - a_{1,2} x_2 - \ldots - a_{1,n} x_n = 0\\
|
||||||
|
&-a_{2,1} x_1 + (\psi - a_{2,2}) x_2 - \ldots - a_{2,n} x_n = 0\\
|
||||||
|
&\ldots\\
|
||||||
|
&-a_{1,1} x_1 - a_{1,2} x_2 - \ldots + (\psi - a_{1,n}) x_n = 0\\
|
||||||
|
\end{aligned}
|
||||||
|
\right\}
|
||||||
|
$$
|
||||||
|
|
||||||
So, $\forall i \in [n]$, as a matrix:
|
So, $\forall i \in [n]$, as a matrix:
|
||||||
|
|
||||||
@@ -338,18 +359,18 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
|
|||||||
adj(\Phi) \Phi = det(\Phi) I
|
adj(\Phi) \Phi = det(\Phi) I
|
||||||
\label{eq:2.4.2}
|
\label{eq:2.4.2}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
(aka. fundamental identity for the adjugate matrix).
|
(aka. \emph{fundamental identity for the adjugate matrix}).
|
||||||
|
|
||||||
So if at \eqref{eq:2.4.1} we multiply both sides by $adj(\Phi)$,
|
So if at \eqref{eq:2.4.1} we multiply both sides by $adj(\Phi)$,
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
adj(\Phi) \cdot \Phi \cdot &m = 0\\
|
adj(\Phi) \cdot \Phi \cdot &m = 0\\
|
||||||
(\text{recall from \eqref{eq:2.4.2}:}~ &det(\Phi)\cdot I ~)\\
|
(\text{recall from \eqref{eq:2.4.2}:}~ &adj(\Phi)\Phi=det(\Phi)\cdot I ~)\\
|
||||||
=det(\Phi) \cdot I \cdot &m = 0
|
=det(\Phi) \cdot I \cdot &m = 0
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
Thus,
|
Thus,
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
det(\Phi) \cdot I \cdot &m = 0\\
|
det(\Phi) \cdot I \cdot &m = 0:\\
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
det(\Phi) & 0 & \ldots & 0\\
|
det(\Phi) & 0 & \ldots & 0\\
|
||||||
0 & det(\Phi) & \ldots & 0\\
|
0 & det(\Phi) & \ldots & 0\\
|
||||||
@@ -372,7 +393,8 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
|
|||||||
\label{eq:2.4.3}
|
\label{eq:2.4.3}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
ie. $det(\Phi)$ is an \emph{annihilator} of the generators $x_i$ of $M$, thus of the entire module $M$.
|
ie. $det(\Phi)$ is an \emph{annihilator} of the generators $x_i$ of $M$, thus
|
||||||
|
is an annihilator of the entire module $M$.
|
||||||
|
|
||||||
|
|
||||||
So, we're interested into calculating the $det(\Phi)$.
|
So, we're interested into calculating the $det(\Phi)$.
|
||||||
@@ -391,7 +413,7 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
|
|||||||
\item the rest of coefficients of $\psi^k$ are also elements in $\aA$
|
\item the rest of coefficients of $\psi^k$ are also elements in $\aA$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
So we have
|
Therefore we have
|
||||||
$$det(\Phi) = \psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n$$
|
$$det(\Phi) = \psi^n + a_1 \psi^{n-1} + a_2 \psi^{n-2} + \ldots + a_{n-1} \psi + a_n$$
|
||||||
with $a_i \in \aA$.
|
with $a_i \in \aA$.
|
||||||
|
|
||||||
@@ -399,22 +421,6 @@ $A[\psi] \subset End M$ is the subring geneerated by $A$ and the action of $\psi
|
|||||||
|
|
||||||
Now, notice that we had $det(\Phi) \cdot x_i = 0 ~\forall~ i\in [n]$.
|
Now, notice that we had $det(\Phi) \cdot x_i = 0 ~\forall~ i\in [n]$.
|
||||||
|
|
||||||
% next part might be removed
|
|
||||||
Since $M$ is a fingen $A$-module, any element $m \in M$ can be written as a linear combination of $M$'s generators $x_i$, ie.
|
|
||||||
$$m = r_1 x_1 + r_2 x_2 + \ldots r_n x_n \in M$$
|
|
||||||
|
|
||||||
If we multiply $m \in M$ by $d = det(\Phi)$,
|
|
||||||
\begin{align*}
|
|
||||||
d \cdot m &= d \cdot (r_1 x_1 + r_2 x_2 + \ldots r_n x_n)\\
|
|
||||||
&= r_1(d \cdot x_1) + r_2 (d \cdot x_2) + \ldots + r_n (d \cdot x_n)\\
|
|
||||||
(\text{every}~ &d \cdot x_i = det(\Phi)x_i = 0 ~\forall~ i)\\
|
|
||||||
&= r_1 (0) + \ldots + r_n (0)\\
|
|
||||||
&= 0
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
Therefore, $det(\Phi) \cdot m = 0$.
|
|
||||||
% end of might be removed
|
|
||||||
|
|
||||||
The matrix $\Phi$ is the \emph{characteristic matrix}, $xI-A$, viewed as an operator. Then,
|
The matrix $\Phi$ is the \emph{characteristic matrix}, $xI-A$, viewed as an operator. Then,
|
||||||
$$det(\Phi) = det(xI-A) = p(x)$$
|
$$det(\Phi) = det(xI-A) = p(x)$$
|
||||||
where $p(x)$ is the \emph{characteristic polynomial}.
|
where $p(x)$ is the \emph{characteristic polynomial}.
|
||||||
|
|||||||
Reference in New Issue
Block a user