Browse Source

hypernova: add section for multifolding multiple instances (μ,ν > 1)

master
arnaucube 1 year ago
parent
commit
f1079b0a74
2 changed files with 115 additions and 2 deletions
  1. BIN
      notes_hypernova.pdf
  2. +115
    -2
      notes_hypernova.tex

BIN
notes_hypernova.pdf


+ 115
- 2
notes_hypernova.tex

@ -163,7 +163,7 @@ Let $s= \log m,~ s'= \log n$.
where $\sigma_j,~\theta_j$ are the checks from LCCCS and CCCS respectively with $x=r_x'$. where $\sigma_j,~\theta_j$ are the checks from LCCCS and CCCS respectively with $x=r_x'$.
\item V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\ \item V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\
check: check:
$$c = \left( \sum_{j \in [t]} \gamma^j e_1 \sigma_j + \gamma^{t+1} e_2 \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \sigma \right) \right)$$
$$c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)$$
which should be equivalent to the $g(x)$ computed by $V,P$ in the sum-check protocol. which should be equivalent to the $g(x)$ computed by $V,P$ in the sum-check protocol.
\item $V \rightarrow P: \rho \in^R \mathbb{F}$ \item $V \rightarrow P: \rho \in^R \mathbb{F}$
\item $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$: \item $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$:
@ -173,7 +173,11 @@ Let $s= \log m,~ s'= \log n$.
\mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\ \mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\
v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i
\end{align*} \end{align*}
\item $P$: output folded witness: $\widetilde{w}' \leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2$.
\item $P$: output folded witness and the folded $r_w'$ (random value used for the witness commitment $C$):
\begin{align*}
\widetilde{w}' &\leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2\\
r_w' &\leftarrow r_{w_1} + \rho \cdot r_{w_2}
\end{align*}
\end{enumerate} \end{enumerate}
@ -285,7 +289,116 @@ where $e_1 = \widetilde{eq}(r_x, r_x')$ and $e_2=\widetilde{eq}(\beta, r_x')$.
Which is the check that $V$ performs at step $5$. Which is the check that $V$ performs at step $5$.
\subsection{Multifolding for multiple instances}
The multifolding of multiple LCCCS \& CCCS instances is not shown in the HyperNova paper, but Srinath Setty gave an overview in the PSE HyperNova presentation. This section unfolds it.
We're going to do this example with parameters \textcolor{orange}{LCCCS: $\mu = 2$}, \textcolor{cyan}{CCCS: $\nu = 2$}, which means that we have 2 LCCCS instances and 2 CCCS instances.
Assume we have 4 $z$ vectors, $z_1,~ \textcolor{orange}{z_2}$ for the two LCCCS instances, and $z_3,~ \textcolor{cyan}{z_4}$ for the two CCCS instances, where $z_1,~z_3$ are the vectors that we already had in the example with $\mu=1,\nu=1$, and $z_2,~z_4$ are the extra ones that we're adding now.
In \emph{step 3} of the multifolding with more than one LCCCS and more than one CCCS instances, we have:
\begin{align*}
g(x) &:= \left( \sum_{j \in [t]} \gamma^j \cdot L_{1,j}(x) + \textcolor{orange}{\gamma^{t+j} \cdot L_{2,j}(x)} \right)
+ \gamma^{2t+1} \cdot Q_1(x) + \textcolor{cyan}{\gamma^{2t+2} \cdot Q_2(x)} \\
&L_{1,j}(x) := \widetilde{eq}(r_{1,x}, x) \cdot \left(
\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)
\right)\\
&\textcolor{orange}{L_{2,j}(x)} := \widetilde{eq}(\textcolor{orange}{r_{2,x}}, x) \cdot \left(
\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{orange}{\widetilde{z}_2(y)}
\right)\\
&Q_1(x) := \widetilde{eq}(\beta, x) \cdot \left(
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_3(y) \right)\right)\\
&\textcolor{cyan}{Q_2(x)} := \widetilde{eq}(\textcolor{cyan}{\beta'}, x) \cdot \left(
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)} \right)\right)
\end{align*}
\framebox{\begin{minipage}{4.3 in}
A generic definition of $g(x)$ for $\mu>1~\nu>1$, would be
$$
g(x) := \left( \sum_{i \in [\mu]} \left( \sum_{j \in [t]} \gamma^{i \cdot t+j} \cdot L_{i,j}(x) \right) \right)
+ \left( \sum_{i \in [\nu]} \gamma^{\mu \cdot t + i} \cdot Q_i(x) \right)
$$
\end{minipage}}
Recall, the original $g(x)$ definition was
$$\textcolor{gray}{g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)}$$
\vspace{0.5cm}
In \emph{step 4}, $P \rightarrow V$:
$(\{\sigma_{1,j}\}, \textcolor{orange}{\{\sigma_{2,j}\}}, \{\theta_{1,j}\}, \textcolor{cyan}{\{\theta_{2,j}\}}),~ \text{where} ~\forall j \in [t]$,
$$\sigma_{1,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_1(y)$$
$$\textcolor{orange}{\sigma_{2,j}} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{orange}{\widetilde{z}_2(y)}$$
$$\theta_{1,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_3(y)$$
$$\textcolor{cyan}{\theta_{2,j}} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)}$$
\framebox{\begin{minipage}{4.3 in}
so in a generic way,\\
$P \rightarrow V$:
$(\{\sigma_{i,j}\}, \{\theta_{k,j}\}),~ \text{where} ~\forall~ j \in [t],~ \forall~ i \in [\mu],~ \forall~ k \in [\nu]$
where
$$\sigma_{i,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_i(y)$$
$$\theta_{k,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_{\mu+k}(y)$$
\end{minipage}}
\vspace{1cm}
And in \emph{step 5}, $V$ checks
% TODO check orange gamma^j...
\begin{align*}
c &= \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_{1,j}
~\textcolor{orange}{+ \gamma^{t+j} \cdot e_1 \cdot \sigma_{2,j}}\right)\\
&+ \gamma^{2t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)
+ \textcolor{cyan}{\gamma^{2t+2} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)}
\end{align*}
where
% TODO check e_4
$e_1 \leftarrow \widetilde{eq}(r_{1,x}, r_x'),~ e_2 \leftarrow \widetilde{eq}(r_{2,x}, r_x')$, $e_3 \leftarrow \widetilde{eq}(\beta, r_x'),~ e_4 \leftarrow \widetilde{eq}(\beta', r_x')$ (note: wip, pending check for $\beta, \beta'$ used in step 3).
\vspace{0.5cm}
\framebox{\begin{minipage}{4.3 in}
A generic definition of the check would be
$$
c = \sum_{i \in [\mu]} \left(\sum_{j \in [t]} \gamma^{i \cdot t + j} \cdot e_i \cdot \sigma_{i,j} \right) \\
+ \sum_{k \in [\nu]} \gamma^{\mu \cdot t+k} \cdot e_k \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_{k,j} \right)
$$
\end{minipage}}
where the original check was\\
$\textcolor{gray}{c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)}$
% TODO
% Pending questions:
% - \beta & \beta' can be the same? or related somehow like \beta'=\beta^2 ?
\vspace{0.5cm}
And for the \emph{step 7},
\begin{align*}
C' &\leftarrow C_1 + \rho \cdot C_2 + \rho^2 C_3 + \rho^3 C_4 + \ldots = \sum_{i \in [\mu + \nu]} \rho^i \cdot C_i \\
u' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot u_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot 1\\
\mathsf{x}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot \mathsf{x}_i\\
v_i' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot \sigma_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot \theta_i\\
\end{align*}
and \emph{step 8},
\begin{align*}
\widetilde{w}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i\cdot \widetilde{w}_i\\
r_w' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot r_{w_i}\\
\end{align*}
Note that over all the multifolding for $\mu >1$ and $\nu>1$, we can easily parallelize most of the computation.
\vspace{2cm}
%%%%%% APPENDIX %%%%%% APPENDIX
\appendix \appendix

Loading…
Cancel
Save