|
|
@ -0,0 +1,85 @@ |
|
|
|
# Sage impl of the powers of tau, |
|
|
|
# a Go implementation can be found at: https://github.com/arnaucube/eth-kzg-ceremony-alt |
|
|
|
|
|
|
|
|
|
|
|
load("bls12-381.sage") # file from https://github.com/arnaucube/math/blob/master/bls12-381.sage |
|
|
|
e = Pairing() |
|
|
|
|
|
|
|
def new_empty_SRS(nG1, nG2): |
|
|
|
g1s = [None] * nG1 |
|
|
|
g2s = [None] * nG2 |
|
|
|
for i in range(0, nG1): |
|
|
|
g1s[i] = e.G1 |
|
|
|
for i in range(0, nG2): |
|
|
|
g2s[i] = e.G2 |
|
|
|
|
|
|
|
return [g1s, g2s] |
|
|
|
|
|
|
|
def new_tau(random): |
|
|
|
return e.F1(random) |
|
|
|
|
|
|
|
def compute_contribution(new_tau, prev_srs): |
|
|
|
g1s = [None] * len(prev_srs[0]) |
|
|
|
g2s = [None] * len(prev_srs[1]) |
|
|
|
srs = [g1s, g2s] |
|
|
|
Q = e.r |
|
|
|
|
|
|
|
# compute [τ'⁰]₁, [τ'¹]₁, [τ'²]₁, ..., [τ'ⁿ⁻¹]₁, where n = len(prev_srs.G1s) |
|
|
|
for i in range(0, len(prev_srs[0])): |
|
|
|
srs[0][i] = (new_tau^i) * prev_srs[0][i] |
|
|
|
|
|
|
|
# compute [τ'⁰]₂, [τ'¹]₂, [τ'²]₂, ..., [τ'ⁿ⁻¹]₂, where n = len(prev_srs.G2s) |
|
|
|
for i in range(0, len(prev_srs[1])): |
|
|
|
srs[1][i] = (new_tau^i) * prev_srs[1][i] |
|
|
|
|
|
|
|
return srs |
|
|
|
|
|
|
|
def generate_proof(tau, prev_srs, new_srs): |
|
|
|
# g_1^{tau'} = g_1^{p * tau} = SRS_G1s[1] * p |
|
|
|
g1_ptau = prev_srs[0][1] * tau |
|
|
|
# g_2^{p} |
|
|
|
g2_p = tau * e.G2 |
|
|
|
return [g1_ptau, g2_p] |
|
|
|
|
|
|
|
def verify(prev_srs, new_srs, proof): |
|
|
|
# 1. check that elements of the newSRS are valid points |
|
|
|
for i in range(0, len(new_srs[0])-1): |
|
|
|
assert new_srs[0][i] != None |
|
|
|
assert new_srs[0][i] != e.E1(0) |
|
|
|
assert new_srs[0][i] in e.E1 |
|
|
|
|
|
|
|
for i in range(0, len(new_srs[1])-1): |
|
|
|
assert new_srs[1][i] != None |
|
|
|
assert new_srs[1][i] != e.E2(0) |
|
|
|
assert new_srs[1][i] in e.E2 |
|
|
|
|
|
|
|
# 2. check proof.G1PTau == newSRS.G1Powers[1] |
|
|
|
assert proof[0] == new_srs[0][1] |
|
|
|
|
|
|
|
# 3. check newSRS.G1s[1] (g₁^τ'), is correctly related to prev_srs.G1s[1] (g₁^τ) |
|
|
|
# e([τ]₁, [p]₂) == e([τ']₁, [1]₂) |
|
|
|
assert e.pair(prev_srs[0][1], proof[1]) == e.pair(new_srs[0][1], e.G2) |
|
|
|
|
|
|
|
# 4. check newSRS following the powers of tau structure |
|
|
|
# i) e([τ'ⁱ]₁, [τ']₂) == e([τ'ⁱ⁺¹]₁, [1]₂), for i ∈ [1, n−1] |
|
|
|
for i in range(0, len(new_srs[0])-1): |
|
|
|
assert e.pair(new_srs[0][i], new_srs[1][1]) == e.pair(new_srs[0][i+1], e.G2) |
|
|
|
|
|
|
|
# ii) e([τ']₁, [τ'ʲ]₂) == e([1]₁, [τ'ʲ⁺¹]₂), for j ∈ [1, m−1] |
|
|
|
for i in range(0, len(new_srs[1])-1): |
|
|
|
assert e.pair(new_srs[0][1], new_srs[1][i]) == e.pair(e.G1, new_srs[1][i+1]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(prev_srs) = new_empty_SRS(5, 3) |
|
|
|
|
|
|
|
random = 12345 |
|
|
|
tau = new_tau(random) |
|
|
|
|
|
|
|
new_srs = compute_contribution(tau, prev_srs) |
|
|
|
|
|
|
|
proof = generate_proof(tau, prev_srs, new_srs) |
|
|
|
|
|
|
|
verify(prev_srs, new_srs, proof) |