|
\documentclass{article}
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage{amsfonts}
|
|
\usepackage{amsthm}
|
|
\usepackage{amsmath}
|
|
\usepackage{mathtools}
|
|
\usepackage{enumerate}
|
|
\usepackage{hyperref}
|
|
\usepackage{xcolor}
|
|
|
|
\usepackage{pgf-umlsd} % diagrams
|
|
% message between threads
|
|
% Example:
|
|
% \bloodymess[delay]{sender}{message content}{receiver}{DIR}{start note}{end note}
|
|
\newcommand{\bloodymess}[7][0]{
|
|
\stepcounter{seqlevel}
|
|
\path
|
|
(#2)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess from) {};
|
|
\addtocounter{seqlevel}{#1}
|
|
\path
|
|
(#4)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess to) {};
|
|
\draw[->,>=angle 60] (mess from) -- (mess to) node[midway, above]
|
|
{#3};
|
|
|
|
\if R#5
|
|
\node (\detokenize{#3} from) at (mess from) {\llap{#6~}};
|
|
\node (\detokenize{#3} to) at (mess to) {\rlap{~#7}};
|
|
\else\if L#5
|
|
\node (\detokenize{#3} from) at (mess from) {\rlap{~#6}};
|
|
\node (\detokenize{#3} to) at (mess to) {\llap{#7~}};
|
|
\else
|
|
\node (\detokenize{#3} from) at (mess from) {#6};
|
|
\node (\detokenize{#3} to) at (mess to) {#7};
|
|
\fi
|
|
\fi
|
|
}
|
|
|
|
% prevent warnings of underfull \hbox:
|
|
\usepackage{etoolbox}
|
|
\apptocmd{\sloppy}{\hbadness 4000\relax}{}{}
|
|
|
|
\theoremstyle{definition}
|
|
\newtheorem{definition}{Def}[section]
|
|
\newtheorem{theorem}[definition]{Thm}
|
|
|
|
% custom lemma environment to set custom numbers
|
|
\newtheorem{innerlemma}{Lemma}
|
|
\newenvironment{lemma}[1]
|
|
{\renewcommand\theinnerlemma{#1}\innerlemma}
|
|
{\endinnerlemma}
|
|
|
|
|
|
\title{Notes on Nova}
|
|
\author{arnaucube}
|
|
\date{March 2023}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{abstract}
|
|
Notes taken while reading Nova \cite{cryptoeprint:2021/370} paper.
|
|
|
|
Usually while reading papers I take handwritten notes, this document contains some of them re-written to $LaTeX$.
|
|
|
|
The notes are not complete, don't include all the steps neither all the proofs.
|
|
|
|
Thanks to \href{https://twitter.com/levs57}{Levs57}, \href{https://twitter.com/nibnalin}{Nalin Bhardwaj} and \href{https://twitter.com/cperezz19}{Carlos Pérez} for clarifications on the Nova paper.
|
|
\end{abstract}
|
|
|
|
\tableofcontents
|
|
|
|
\section{NIFS}
|
|
|
|
\subsection{R1CS modification}
|
|
|
|
\paragraph{R1CS}
|
|
R1CS instance: $(A, B, C, io, m, n)$, where $io$ denotes the public input and output, $A, B, C \in \mathbb{F}^{m \times n}$, with $m \geq |io|+1$.
|
|
R1CS is satisfied by a witness $w \in \mathbb{F}^{m-|io|-1}$ such that
|
|
$$Az \circ Bz = Cz$$
|
|
where $z=(io, 1, w)$.
|
|
|
|
\vspace{0.5cm}
|
|
|
|
\textbf{Want}: merge 2 instances of R1CS with the same matrices into a single one. Each instance has $z_i = (W_i,~ x_i)$ (public witness, private values resp.).
|
|
|
|
\paragraph{traditional R1CS}
|
|
Merged instance with $z=z_1 + r z_2$, for rand $r$. But, since R1CS is not linear $\longrightarrow$ can not apply.
|
|
|
|
eg.
|
|
\begin{align*}
|
|
Az \circ Bz &= A(z_1 + r z_2) \circ B (z_1 + r z_2)\\
|
|
&= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\
|
|
&\neq Cz
|
|
\end{align*}
|
|
|
|
$\longrightarrow$ introduce error vector $E \in \mathbb{F}^m$, which absorbs the cross-temrs generated by folding.
|
|
|
|
$\longrightarrow$ introduce scalar $u$, which absorbs an extra factor of $r$ in $C z_1 + r^2 C z_2$ and in $z=(W, x, 1+r\cdot 1)$.
|
|
|
|
\paragraph{Relaxed R1CS}
|
|
\begin{align*}
|
|
&u=u_1+r u_2\\
|
|
&E=E_1 + r (A z_1 \circ B z_2 + A z_2 \circ B z_1 - u_1 C z_2 - u_2 C z_1) + r^2 E_2\\
|
|
&Az \circ Bz = uCz + E,~~ with~ z=(W,~x,~u)
|
|
\end{align*}
|
|
where R1CS set $E=0,~u=1$.
|
|
|
|
\begin{align*}
|
|
Az \circ Bz &= A z_1 \circ B z_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (A z_2 \circ B z_2)\\
|
|
&= (u_1 C z_1 + E_1) + r (A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 (u_2 C z_2 + E_2)\\
|
|
&= u_1 C z_1 + \underbrace{E_1 + r(A z_1 \circ B z_2 + A z_2 \circ B z_1) + r^2 E_2}_\text{E} + r^2 u_2 C z_2\\
|
|
&= u_1 C z_1 + r^2 u_2 C z_2 + E\\
|
|
&= (u_1 + r u_2) \cdot C \cdot (z_1 + r z_2) + E\\
|
|
&= uCz + E
|
|
\end{align*}
|
|
|
|
For R1CS matrices $(A,~B,~C)$, the folded witness $W$ is a satisfying witness for the folded instance $(E,~u,~x)$.
|
|
|
|
|
|
|
|
\vspace{20px}
|
|
Problem: not non-trivial, and not zero-knowledge. Solution: use polynomial commitment with hiding, binding, succintness and additively homomorphic properties.
|
|
|
|
\paragraph{Committed Relaxed R1CS}
|
|
Instance for a Committed Relaxed R1CS\\
|
|
$(\overline{E}, u, \overline{W}, x)$, satisfyied by a witness $(E, r_E, W, r_W)$ such that
|
|
\begin{align*}
|
|
&\overline{E} = Com(E, r_E)\\
|
|
&\overline{W} = Com(E, r_W)\\
|
|
&Az \circ Bz = uCz+E,~~ where~z=(W, x, u)
|
|
\end{align*}
|
|
|
|
|
|
\subsection{Folding scheme for committed relaxed R1CS}
|
|
|
|
V and P take two \emph{committed relaxed R1CS} instances
|
|
\begin{align*}
|
|
\varphi_1&=(\overline{E}_1, u_1, \overline{W}_1, x_1)\\
|
|
\varphi_2&=(\overline{E}_2, u_2, \overline{W}_2, x_2)
|
|
\end{align*}
|
|
|
|
P additionally takes witnesses to both instances
|
|
\begin{align*}
|
|
(E_1, r_{E_1}, W_1, r_{W_1})\\
|
|
(E_2, r_{E_2}, W_2, r_{W_2})
|
|
\end{align*}
|
|
|
|
Let $Z_1 = (W_1, x_1, u_1)$ and $Z_2 = (W_2, x_2, u_2)$.
|
|
|
|
% \paragraph{Protocol}
|
|
\begin{enumerate}
|
|
\item P send $\overline{T} = Com(T, r_T)$,\\
|
|
where $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_1 - u_2 C z_2$\\
|
|
and rand $r_T \in \mathbb{F}$
|
|
\item V sample random challenge $r \in \mathbb{F}$
|
|
\item V, P output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$
|
|
\begin{align*}
|
|
&\overline{E}=\overline{E}_1 + r \overline{T} + r^2 \overline{E}_2\\
|
|
&u = u_1 + r u_2\\
|
|
&\overline{W} = \overline{W}_1 + r \overline{W}_2\\
|
|
&x = x_1 + r x_2
|
|
\end{align*}
|
|
\item P outputs the folded witness $(E, r_E, W, r_W)$
|
|
\begin{align*}
|
|
&E = E_1 + r T + r^2 E_2\\
|
|
&r_E = r_{E_1} + r \cdot r_T + r^2 r_{E_2}\\
|
|
&W=W_1 + r W_2\\
|
|
&r_W = r_{W_1} + r \cdot r_{W_2}
|
|
\end{align*}
|
|
\end{enumerate}
|
|
|
|
P will prove that knows the valid witness $(E, r_E, W, r_W)$ for the committed relaxed R1CS without revealing its value.
|
|
|
|
\begin{center}
|
|
\begin{sequencediagram}
|
|
\newinst[1]{p}{Prover}
|
|
\newinst[3]{v}{Verifier}
|
|
|
|
\bloodymess[1]{p}{$\overline{T}$}{v}{R}{
|
|
\shortstack{
|
|
$T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_2 - u_2 C z_2$\\
|
|
$\overline{T}=Commit(T, r_T)$
|
|
}
|
|
}{
|
|
\shortstack{
|
|
$r \in^R \mathbb{F}_p$\\
|
|
$\overline{E} = \overline{E}_1 + r \overline{T} + r^2 \overline{E}_2$\\
|
|
$u= u_1 + r u_2$\\
|
|
$\overline{W} = \overline{W}_1 + r \overline{W}_2$\\
|
|
$\overline{x} = \overline{x}_1 + r \overline{x}_2$\\
|
|
$\varphi=(\overline{E}, u, \overline{W}, x)$
|
|
}
|
|
}
|
|
\bloodymess[1]{v}{$r$}{p}{L}{}{
|
|
\shortstack{
|
|
$E = E_1 + r T + r^2 E_2$\\
|
|
$u= u_1 + r u_2$\\
|
|
$W = W_1 + r W_2$\\
|
|
$r_{W} = r_{W_1} + r r_{W_2}$\\
|
|
$(E, r_E, W, r_W)$
|
|
}
|
|
}
|
|
\end{sequencediagram}
|
|
\end{center}
|
|
|
|
|
|
The previous protocol achieves non-interactivity via Fiat-Shamir transform, obtaining a \emph{Non-Interactive Folding Scheme for Committed Relaxed R1CS}.
|
|
|
|
Note: the paper later uses $\mathsf{u}_i,~ \mathsf{U}_i$ for the two inputed $\varphi_1,~ \varphi_2$, and later $\mathsf{u}_{i+1}$ for the outputed $\varphi$. Also, the paper later uses $\mathsf{w},~ \mathsf{W}$ to refer to the witnesses of two folded instances (eg. $\mathsf{w}=(E, r_E, W, r_W)$).
|
|
|
|
|
|
\subsection{NIFS}
|
|
|
|
\underline{fold witness, $(pk, (u_1, w_1), (u_2, w_2))$}:
|
|
\begin{enumerate}
|
|
\item $T=A z_1 \circ B z_1 + A z_2 \circ B z_2 - u_1 C z_2 - u_2 C z_2$
|
|
\item $\overline{T}=Commit(T, r_T)$
|
|
% \item output the folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$
|
|
% \begin{align*}
|
|
% &\overline{E}=\overline{E}_1 + r \overline{T} + r^2 \overline{E}_2\\
|
|
% &u = u_1 + r u_2\\
|
|
% &\overline{W} = \overline{W}_1 + r \overline{W}_2\\
|
|
% &x = x_1 + r x_2
|
|
% \end{align*}
|
|
\item output the folded witness $(E, r_E, W, r_W)$
|
|
\begin{align*}
|
|
&E = E_1 + r T + r^2 E_2\\
|
|
&r_E = r_{E_1} + r \cdot r_T + r^2 r_{E_2}\\
|
|
&W=W_1 + r W_2\\
|
|
&r_W = r_{W_1} + r \cdot r_{W_2}
|
|
\end{align*}
|
|
\end{enumerate}
|
|
|
|
\underline{fold instances $(\varphi_1, \varphi_2) \rightarrow \varphi$, $(vk, u_1, u_2, \overline{E}_1, \overline{E}_2, \overline{W}_1, \overline{W}_2, \overline{T})$}:\\
|
|
V compute folded instance $\varphi = (\overline{E}, u, \overline{W}, x)$
|
|
\begin{align*}
|
|
&\overline{E}=\overline{E}_1 + r \overline{T} + r^2 \overline{E}_2\\
|
|
&u = u_1 + r u_2\\
|
|
&\overline{W} = \overline{W}_1 + r \overline{W}_2\\
|
|
&x = x_1 + r x_2
|
|
\end{align*}
|
|
|
|
\section{Nova}
|
|
IVC (Incremental Verifiable Computation) scheme for a non-interactive folding scheme.
|
|
|
|
\subsection{IVC proofs}
|
|
|
|
Allows prover to show $z_n = F^{(n)}(z_0)$, for some count $n$, initial input $z_0$, and output $z_n$.\\
|
|
$F$: program function (polynomial-time computable)\\
|
|
$F'$: augmented function, invokes $F$ and additionally performs fold-related stuff.
|
|
|
|
\vspace{0.5cm}
|
|
Two committed relaxed R1CS instances:\\
|
|
$\mathsf{U}_i$: represents the correct execution of invocations $1, \ldots, i-1$ of $F'$\\
|
|
$\mathsf{u}_i$: represents the correct execution of invocations $i$ of $F'$
|
|
|
|
\paragraph{Simplified version of $F'$ for intuition}
|
|
\vspace{0.5cm}
|
|
$F'$ performs two tasks:
|
|
\begin{enumerate}[i.]
|
|
\item execute a step of the incremental computation:
|
|
instance $\mathsf{u}_i$ contains $z_i$, used to output $z_{i+1}=F(z_i)$
|
|
\item invokes the verifier of the non-interactive folding scheme to fold the task of checking $\mathsf{u}_i$ and $\mathsf{U}_i$ into the task of checking a single instance $\mathsf{U}_{i+1}$
|
|
\end{enumerate}
|
|
|
|
\vspace{0.5cm}
|
|
$F'$ proves that:
|
|
\begin{enumerate}
|
|
\item $\exists ( (i, z_0, z_i, \mathsf{u}_i, \mathsf{U}_i), \mathsf{U}_{i+1}, \overline{T})$ such that
|
|
\begin{enumerate}[i.]
|
|
\item $\mathsf{u}_i.x = H(vk, i, z_0, z_i, \mathsf{U}_i)$
|
|
\item $h_{i+1} = H(vk, i+1, z_0, F(z_i), \mathsf{U}_{i+1})$
|
|
\item $\mathsf{U}_{i+1} = NIFS.V(vk, \mathsf{U}_i, \mathsf{u}_i, \overline{T})$
|
|
\end{enumerate}
|
|
\item $F'$ outputs $h_{i+1}$
|
|
\end{enumerate}
|
|
|
|
|
|
$F'$ is described as follows:\\
|
|
\underline{$F'(vk, \mathsf{U}_i, \mathsf{u}_i, (i, z_0, z_i), w_i, \overline{T}) \rightarrow x$}:\\
|
|
if $i=0$, output $H(vk, 1, z_0, F(z_0, w_i), \mathsf{u}_{\bot})$\\
|
|
otherwise
|
|
\begin{enumerate}
|
|
\item check $\mathsf{u}_i.x = H(vk, i, z_0, z_i, \mathsf{U}_i)$
|
|
\item check $(\mathsf{u}_i.\overline{E}, \mathsf{u}_i.u) = (\mathsf{u}_{\bot}.\overline{E}, 1)$
|
|
\item compute $\mathsf{U}_{i+1} \leftarrow NIFS.V(vk, U, u, \overline{T})$
|
|
\item output $H(vk, i+1, z_0, F(z_i, w_i), \mathsf{U}_{i+1})$
|
|
\end{enumerate}
|
|
|
|
% TODO add diagram
|
|
|
|
\paragraph{IVC Proof}
|
|
iteration $i+1$: prover runs $F'$ and computes $\mathsf{u}_{i+1},~ \mathsf{U}_{i+1}$, with corresponding witnesses $\mathsf{w}_{i+1},~ \mathsf{W}_{i+1}$.
|
|
$(\mathsf{u}_{i+1},~ \mathsf{U}_{i+1})$ attest correctness of $i+1$ invocations of $F'$, the IVC proof is $\pi_{i+1} = ( (\mathsf{U}_{i+1}, \mathsf{W}_{i+1}), (\mathsf{u}_{i+1}, \mathsf{w}_{i+1}))$.
|
|
|
|
|
|
\vspace{0.5cm}
|
|
|
|
\underline{$P(pk, (i, z_0, z_i), \mathsf{w}_i, \pi_i) \rightarrow \pi_{i+1}$}:\\
|
|
Parse $\pi_i = ( (\mathsf{U}_i, \mathsf{W}_i), (\mathsf{u}_i, \mathsf{w}_i))$, then
|
|
\begin{enumerate}
|
|
\item if $i=0$: $(\mathsf{U}_{i+1}, \mathsf{W}_{i+1}, \overline{T}) \leftarrow (\mathsf{u}_{\perp}, \mathsf{w}_{\perp}, \mathsf{u}_{\perp}.{\overline{E}})$\\
|
|
otherwise: $(\mathsf{U}_{i+1}, \mathsf{W}_{i+1}, \overline{T}) \leftarrow NIFS.P(pk, (\mathsf{U}_i, \mathsf{W}_i), (\mathsf{u}_i, \mathsf{w}_i))$
|
|
\item compute $(\mathsf{u}_{i+1}, \mathsf{w}_{i+1}) \leftarrow trace(F', (vk, \mathsf{U}_i, \mathsf{u}_i, (i, z_0, z_i), \mathsf{w}_i, \overline{T}))$
|
|
\item output $\pi_{i+1} \leftarrow ((\mathsf{U}_{i+1}, \mathsf{W}_{i+1}), (\mathsf{u}_{i+1}, \mathsf{w}_{i+1}))$
|
|
\end{enumerate}
|
|
|
|
\underline{$V(vk, (i, z_0, z_i), \pi_i) \rightarrow \{0,1\}$}:
|
|
if $i=0$: check that $z_i=z_0$\\
|
|
otherwise, parse $\pi_i = ( (\mathsf{U}_i, \mathsf{W}_i), (\mathsf{u}_i, \mathsf{w}_i))$, then
|
|
\begin{enumerate}
|
|
\item check $\mathsf{u}_i.x = H(vk, i, z_0, z_i, \mathsf{U}_i)$
|
|
\item check $(\mathsf{u}_i.{\overline{E}}, \mathsf{u}_i.u) = (\mathsf{u}_{\perp}.{\overline{E}}, 1)$
|
|
\item check that $\mathsf{W}_i,~ \mathsf{w}_i$ are satisfying witnesses to $\mathsf{U}_i,~ \mathsf{u}_i$ respectively
|
|
\end{enumerate}
|
|
|
|
\vspace{0.5cm}
|
|
|
|
\paragraph{A zkSNARK of a Valid IVC Proof} prover and verifier:\\
|
|
\underline{$P(pk, (i, z_0, z_i), \Pi) \rightarrow \pi$}:\\
|
|
if $i=0$, output $\perp$, otherwise:\\
|
|
parse $\Pi$ as $((\mathsf{U}, \mathsf{W}), (\mathsf{u}, \mathsf{w}))$
|
|
\begin{enumerate}
|
|
\item compute $(\mathsf{U}', \mathsf{W}', \overline{T}) \leftarrow NIFS.P(pk_{NIFS}, (\mathsf{U,~W}), (\mathsf{u,~w}))$
|
|
\item compute $\pi_{\mathsf{u}'} \leftarrow zkSNARK.P(pk_{zkSNARK}, \mathsf{U}', \mathsf{W}')$
|
|
\item output $(\mathsf{U,~ u}, \overline{T}, \pi_{\mathsf{u}'})$
|
|
\end{enumerate}
|
|
|
|
\underline{$V(vk, (i, z_0, z_i), \pi) \rightarrow \{0,1\}$}:\\
|
|
if $i=0$: check that $z_i=z_0$\\
|
|
parse $\pi$ as $(\mathsf{U}, \mathsf{u}, \overline{T}, \pi_{\mathsf{u}'})$
|
|
\begin{enumerate}
|
|
\item check $\mathsf{u}.x = H(vk_{NIFS}, i, z_0, z_i, \mathsf{U})$
|
|
\item check $(\mathsf{u}.{\overline{E}}, \mathsf{u}.u) = (\mathsf{u}_{\perp}.{\overline{E}}, 1)$
|
|
\item compute $\mathsf{U}' \leftarrow NIFS.V(vk_{NIFS}, \mathsf{U}, \mathsf{u}, \overline{T})$
|
|
\item check $zkSNARK.V(vk_{zkSNARK}, \mathsf{U}', \pi_{\mathsf{u}'})=1$
|
|
\end{enumerate}
|
|
|
|
|
|
\bibliography{paper-notes.bib}
|
|
\bibliographystyle{unsrt}
|
|
|
|
\end{document}
|