import unittest, operator
|
|
load("ring-signatures.sage")
|
|
|
|
# A Rust implementation of this scheme can be found at:
|
|
# https://github.com/arnaucube/ring-signatures-rs
|
|
|
|
# ethereum elliptic curve
|
|
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
|
a = 0
|
|
b = 7
|
|
F = GF(p)
|
|
E = EllipticCurve(F, [a,b])
|
|
GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
|
|
GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
|
|
g = E(GX,GY)
|
|
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
|
|
h = 1
|
|
q = g.order()
|
|
assert is_prime(p)
|
|
assert is_prime(q)
|
|
assert g * q == 0
|
|
|
|
|
|
class TestRingSignatures(unittest.TestCase):
|
|
def test_bLSAG_ring_of_5(self):
|
|
test_bLSAG(5, 3)
|
|
def test_bLSAG_ring_of_20(self):
|
|
test_bLSAG(20, 14)
|
|
|
|
def test_bLSAG(ring_size, pi):
|
|
print(f"[bLSAG] Testing with a ring of {ring_size} keys")
|
|
prover = Prover(F, g)
|
|
n = ring_size
|
|
R = [None] * n
|
|
|
|
# generate prover's key pair
|
|
K_pi = prover.new_key()
|
|
|
|
# generate other n public keys
|
|
for i in range(0, n):
|
|
R[i] = g * i
|
|
|
|
# set K_pi
|
|
R[pi] = K_pi
|
|
|
|
# sign m
|
|
m = 1234
|
|
print("sign")
|
|
sig = prover.sign(m, R)
|
|
|
|
print("verify")
|
|
key_image = prover.w * hashToPoint(prover.K)
|
|
verify(g, R, m, key_image, sig)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|