|
|
import unittest, operator load("ring-signatures.sage")
# A Rust implementation of this scheme can be found at: # https://github.com/arnaucube/ring-signatures-rs
# ethereum elliptic curve p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F a = 0 b = 7 F = GF(p) E = EllipticCurve(F, [a,b]) GX = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 GY = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 g = E(GX,GY) n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 h = 1 q = g.order() assert is_prime(p) assert is_prime(q) assert g * q == 0
class TestRingSignatures(unittest.TestCase): def test_bLSAG_ring_of_5(self): test_bLSAG(5, 3) def test_bLSAG_ring_of_20(self): test_bLSAG(20, 14)
def test_bLSAG(ring_size, pi): print(f"[bLSAG] Testing with a ring of {ring_size} keys") prover = Prover(F, g) n = ring_size R = [None] * n
# generate prover's key pair K_pi = prover.new_key()
# generate other n public keys for i in range(0, n): R[i] = g * i
# set K_pi R[pi] = K_pi
# sign m m = 1234 print("sign") sig = prover.sign(m, R)
print("verify") key_image = prover.w * hashToPoint(prover.K) verify(g, R, m, key_image, sig)
if __name__ == '__main__': unittest.main()
|