|
\documentclass{beamer}
|
|
% \usefonttheme[onlymath]{serif}
|
|
|
|
\mode<presentation>
|
|
{
|
|
\usetheme{Frankfurt}
|
|
\usecolortheme{dove} %% grey scale
|
|
\useinnertheme{circles}
|
|
\setbeamercovered{transparent}
|
|
}
|
|
|
|
\hypersetup{
|
|
colorlinks,
|
|
citecolor=black,
|
|
filecolor=black,
|
|
linkcolor=black,
|
|
urlcolor=blue
|
|
}
|
|
\usepackage{graphicx}
|
|
\usepackage{pgf-umlsd} % diagrams
|
|
|
|
\setbeamertemplate{itemize}{$\circ$}
|
|
\setbeamertemplate{itemize items}{$\circ$}
|
|
|
|
\beamertemplatenavigationsymbolsempty %% no navigation bar
|
|
|
|
\setbeamertemplate{footline}{\hspace*{.1cm}\scriptsize{
|
|
\hspace*{50pt} \hfill\insertframenumber/\inserttotalframenumber\hspace*{.1cm}\vspace*{.1cm}}}
|
|
|
|
\setbeamertemplate{caption}[numbered]
|
|
\setbeamerfont{caption}{size=\tiny}
|
|
|
|
% message between threads. From https://tex.stackexchange.com/a/174765
|
|
% Example:
|
|
% \bloodymess[delay]{sender}{message content}{receiver}{DIR}{start note}{end note}
|
|
\newcommand{\bloodymess}[7][0]{
|
|
\stepcounter{seqlevel}
|
|
\path
|
|
(#2)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess from) {};
|
|
\addtocounter{seqlevel}{#1}
|
|
\path
|
|
(#4)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess to) {};
|
|
\draw[->,>=angle 60] (mess from) -- (mess to) node[midway, above]
|
|
{#3};
|
|
|
|
\if R#5
|
|
\node (\detokenize{#3} from) at (mess from) {\llap{#6~}};
|
|
\node (\detokenize{#3} to) at (mess to) {\rlap{~#7}};
|
|
\else\if L#5
|
|
\node (\detokenize{#3} from) at (mess from) {\rlap{~#6}};
|
|
\node (\detokenize{#3} to) at (mess to) {\llap{#7~}};
|
|
\else
|
|
\node (\detokenize{#3} from) at (mess from) {#6};
|
|
\node (\detokenize{#3} to) at (mess to) {#7};
|
|
\fi
|
|
\fi
|
|
}
|
|
|
|
|
|
|
|
%Information to be included in the title page:
|
|
\title{HyperNova's multifolding overview}
|
|
\author{}
|
|
\date{\scriptsize{2023-06-22\\\href{https://0xparc.org}{0xPARC} Novi team}}
|
|
|
|
\begin{document}
|
|
|
|
\frame{\titlepage}
|
|
|
|
\section[Overview]{Overview}
|
|
|
|
\begin{frame}{Multifolding - Overview}
|
|
|
|
\begin{tiny}
|
|
\begin{enumerate}
|
|
\item[1.] $V \rightarrow P: \gamma \in^R \mathbb{F},~ \beta \in^R \mathbb{F}^s$
|
|
\item[2.] $V: r_x' \in^R \mathbb{F}^s$
|
|
\item[3.] $V \leftrightarrow P$: sum-check protocol:
|
|
$c \leftarrow \langle P, V(r_x') \rangle (g, s, d+1, \underbrace{\sum_{j \in [t]} \gamma^j \cdot v_j}_\text{T})$, where:
|
|
\begin{align*}
|
|
g(x) &:= \underbrace{\left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right)}_\text{LCCCS check} + \underbrace{\gamma^{t+1} \cdot Q(x)}_\text{CCCS check}\\
|
|
L_j(x) &:= \widetilde{eq}(r_x, x) \cdot \left(
|
|
\underbrace{\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)}_\text{LCCCS check}
|
|
\right)\\
|
|
Q(x) := &\widetilde{eq}(\beta, x) \cdot \left(
|
|
\underbrace{ \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) }_\text{CCCS check}
|
|
\right)
|
|
\end{align*}
|
|
\end{enumerate}
|
|
\end{tiny}
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}{Multifolding - Overview}
|
|
|
|
\begin{tiny}
|
|
\begin{enumerate}
|
|
\item[4.] $P \rightarrow V$: $\left( (\sigma_1, \ldots, \sigma_t), (\theta_1, \ldots, \theta_t) \right)$, where $\forall j \in [t]$,
|
|
$$\sigma_j = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_1(y)$$
|
|
$$\theta_j = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_2(y)$$
|
|
\item[5.] V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\
|
|
check:
|
|
$$c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)$$
|
|
\item[6.] $V \rightarrow P: \rho \in^R \mathbb{F}$
|
|
\item[7.] $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$:
|
|
\begin{align*}
|
|
C' &\leftarrow C_1 + \rho \cdot C_2\\
|
|
u' &\leftarrow u + \rho \cdot 1\\
|
|
\mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\
|
|
v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i
|
|
\end{align*}
|
|
\item[8.] $P$: output folded witness and the folded $r_w'$:
|
|
\begin{align*}
|
|
\widetilde{w}' &\leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2\\
|
|
r_w' &\leftarrow r_{w_1} + \rho \cdot r_{w_2}
|
|
\end{align*}
|
|
\end{enumerate}
|
|
\end{tiny}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Multifolding - Overview}
|
|
\begin{tiny}
|
|
\begin{center}
|
|
\begin{sequencediagram}
|
|
\newinst[1]{p}{Prover}
|
|
\newinst[3]{v}{Verifier}
|
|
|
|
\bloodymess[1]{v}{$\gamma,~\beta,~r_x'$}{p}{L}{
|
|
\shortstack{
|
|
$\gamma \in \mathbb{F},~ \beta \in \mathbb{F}^s$\\
|
|
$r_x' \in \mathbb{F}^s$
|
|
}
|
|
}{}
|
|
\bloodymess[1]{p}{$c,~ \pi_{SC}$}{v}{R}{sum-check prove}{sum-check verify}
|
|
\bloodymess[1]{p}{$\{\sigma_j\},~\{\theta_j\}$}{v}{R}{compute $\{\sigma_j\}, \{\theta_j\}~ \forall j \in [t]$}{verify $c$ with $\{\sigma_j\}, \{\theta_j\}$ relation}
|
|
\bloodymess[1]{v}{$\rho$}{p}{L}{$\rho \in^R \mathbb{F}$}{}
|
|
\callself[0]{p}{fold LCCCS instance}{p}
|
|
\prelevel
|
|
\callself[0]{v}{fold LCCCS instance}{v}
|
|
\callself[0]{p}{fold $\widetilde{w}, r_w$}{p}
|
|
\end{sequencediagram}
|
|
\end{center}
|
|
\end{tiny}
|
|
\end{frame}
|
|
|
|
|
|
\section[Checks]{Checks}
|
|
|
|
\begin{tiny}
|
|
\begin{frame}{LCCCS checks}
|
|
$$
|
|
\color{gray}{g(x) :=}
|
|
\color{black}{\underbrace{\left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right)}_\text{LCCCS} }
|
|
\color{gray}{+ \gamma^{t+1} \cdot Q(x)}
|
|
$$
|
|
$$
|
|
L_j(x) := \widetilde{eq}(r_x, x) \cdot \left(
|
|
\underbrace{\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)}_\text{LCCCS check}
|
|
\right)
|
|
$$
|
|
|
|
|
|
Notice that, $v_j$ from LCCCS relation check
|
|
|
|
\begin{align*}
|
|
v_j &= \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x, y) \cdot \widetilde{z}_1(y)\\
|
|
&= \sum_{x \in \{0,1\}^s}
|
|
\widetilde{eq}(r_x, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) \right)\\
|
|
&= \sum_{x \in \{0,1\}^s} L_j(x)
|
|
\end{align*}
|
|
|
|
\end{frame}
|
|
\begin{frame}{CCCS checks}
|
|
$$
|
|
\color{gray}{g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) +}
|
|
\color{black}{\underbrace{\gamma^{t+1} \cdot Q(x)}_\text{CCCS}}
|
|
$$
|
|
$$Q(x) := \widetilde{eq}(\beta, x) \cdot \left(
|
|
\underbrace{ \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) }_\text{CCCS check}
|
|
\right)$$
|
|
|
|
Recall that Spartan's $\widetilde{F}_{io}(x)$ here is $q(x)$, so we're doing the same Spartan check:
|
|
|
|
$$
|
|
0 =G(\beta) = \sum_{x \in \{0,1\}^s} Q(x) = \sum_{x \in \{0,1\}^s} eq(\beta, x) \cdot q(x)$$
|
|
$$= \sum_{x \in \{0,1\}^s}
|
|
\underbrace{\widetilde{eq}(\beta , x) \cdot
|
|
\overbrace{
|
|
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right)
|
|
}^{q(x)}
|
|
}_{Q(x)}
|
|
$$
|
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}{Verifier checks}
|
|
\textcolor{gray}{
|
|
Recall:
|
|
$$g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)$$
|
|
$$c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)$$
|
|
}
|
|
|
|
We can see now that V's check in step 5,
|
|
|
|
\begin{align*}
|
|
c &=
|
|
\left( \sum_{j \in [t]} \gamma^j \cdot \overbrace{e_1 \cdot \sigma_j}^{L_j(r_x')} \right) + \gamma^{t+1} \cdot \overbrace{e_2 \cdot \sum_{i \in [q]} c_i \prod_{j \in S_i} \theta_j}^{Q(x)}\\
|
|
&= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(r_x') \right) + \gamma^{t+1} \cdot Q(r_x')\\
|
|
&= g(r_x')
|
|
\end{align*}
|
|
|
|
where $e_1 = \widetilde{eq}(r_x, r_x')$, $e_2=\widetilde{eq}(\beta, r_x')$.
|
|
\end{frame}
|
|
\end{tiny}
|
|
|
|
\section[Multiple instances]{Multiple instances}
|
|
|
|
\begin{footnotesize}
|
|
\begin{frame}{Multifolding multiple instances}
|
|
Hypernova paper: $\mu=1, \nu=1$ \emph{(ie. 1 LCCCS instance and 1 CCCS instance)}
|
|
|
|
\vspace{1cm}
|
|
In next slides
|
|
\begin{itemize}
|
|
\item example with: $\color{orange}{LCCCS: \mu = 2},~ \color{blue}{CCCS: \nu = 2}$
|
|
\item generalized equations for $\mu,~\nu$
|
|
\end{itemize}
|
|
|
|
Let $z_1,~ \color{orange}{z_2}$ be the two LCCCS instances, and $z_3,~ \color{blue}{z_4}$ be the two CCCS instances
|
|
|
|
\end{frame}
|
|
\end{footnotesize}
|
|
|
|
\begin{tiny}
|
|
\begin{frame}
|
|
In \emph{step 3},
|
|
|
|
\begin{align*}
|
|
g(x) &:= \left( \sum_{j \in [t]} \gamma^j \cdot L_{1,j}(x) + \textcolor{orange}{\gamma^{t+j} \cdot L_{2,j}(x)} \right)
|
|
+ \gamma^{2t+1} \cdot Q_1(x) + \textcolor{cyan}{\gamma^{2t+2} \cdot Q_2(x)} \\
|
|
&L_{1,j}(x) := \widetilde{eq}(r_{1,x}, x) \cdot \left(
|
|
\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)
|
|
\right)\\
|
|
&\textcolor{orange}{L_{2,j}(x)} := \widetilde{eq}(\textcolor{orange}{r_{2,x}}, x) \cdot \left(
|
|
\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{orange}{\widetilde{z}_2(y)}
|
|
\right)\\
|
|
&Q_1(x) := \widetilde{eq}(\beta, x) \cdot \left(
|
|
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_3(y) \right)\right)\\
|
|
&\textcolor{cyan}{Q_2(x)} := \widetilde{eq}(\textcolor{cyan}{\beta}, x) \cdot \left(
|
|
\sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)} \right)\right)
|
|
\end{align*}
|
|
|
|
\framebox{\begin{minipage}{4.3 in}
|
|
A generic definition of $g(x)$ for $\mu>1~\nu>1$, would be
|
|
|
|
$$
|
|
g(x) := \left( \sum_{i \in [\mu]} \left( \sum_{j \in [t]} \gamma^{i \cdot t+j} \cdot L_{i,j}(x) \right) \right)
|
|
+ \left( \sum_{i \in [\nu]} \gamma^{\mu \cdot t + i} \cdot Q_i(x) \right)
|
|
$$
|
|
\end{minipage}}
|
|
|
|
Recall, the original $g(x)$ definition was
|
|
$$\textcolor{gray}{g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)}$$
|
|
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
In \emph{step 4}, $P \rightarrow V$: $(\{\sigma_{1,j}\}, \textcolor{orange}{\{\sigma_{2,j}\}}, \{\theta_{1,j}\}, \textcolor{cyan}{\{\theta_{2,j}\}}),~ \text{where} ~\forall j \in [t]$,
|
|
|
|
$$\sigma_{1,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_1(y)$$
|
|
$$\textcolor{orange}{\sigma_{2,j}} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{orange}{\widetilde{z}_2(y)}$$
|
|
$$\theta_{1,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_3(y)$$
|
|
$$\textcolor{cyan}{\theta_{2,j}} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)}$$
|
|
|
|
\framebox{\begin{minipage}{4.3 in}
|
|
so in a generic way,\\
|
|
$P \rightarrow V$:
|
|
$(\{\sigma_{i,j}\}, \{\theta_{k,j}\}),~ \text{where} ~\forall~ j \in [t],~ \forall~ i \in [\mu],~ \forall~ k \in [\nu]$
|
|
where
|
|
$$\sigma_{i,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_i(y)$$
|
|
$$\theta_{k,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_{\mu+k}(y)$$
|
|
\end{minipage}}
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
And in \emph{step 5}, $V$ checks
|
|
|
|
\begin{align*}
|
|
c &= \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_{1,j}
|
|
~\textcolor{orange}{+ \gamma^{t+j} \cdot e_2 \cdot \sigma_{2,j}}\right)
|
|
+ \gamma^{2t+1} \cdot e_3 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)
|
|
+ \textcolor{cyan}{\gamma^{2t+2} \cdot e_4 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)}
|
|
\end{align*}
|
|
|
|
where
|
|
$e_1 \leftarrow \widetilde{eq}(r_{1,x}, r_x'),~ e_2 \leftarrow \widetilde{eq}(r_{2,x}, r_x')$, $e_3, e_4 \leftarrow \widetilde{eq}(\beta, r_x')$.
|
|
|
|
\vspace{0.5cm}
|
|
|
|
\framebox{\begin{minipage}{4.3 in}
|
|
A generic definition of the check would be
|
|
$$
|
|
c = \sum_{i \in [\mu]} \left(\sum_{j \in [t]} \gamma^{i \cdot t + j} \cdot e_i \cdot \sigma_{i,j} \right) \\
|
|
+ \sum_{k \in [\nu]} \gamma^{\mu \cdot t+k} \cdot e_k \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_{k,j} \right)
|
|
$$
|
|
\end{minipage}}
|
|
|
|
where the original check was\\
|
|
$\textcolor{gray}{c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)}$
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}
|
|
And for the \emph{step 7},
|
|
\begin{align*}
|
|
C' &\leftarrow C_1 + \rho \cdot C_2 + \rho^2 C_3 + \rho^3 C_4 + \ldots = \sum_{i \in [\mu + \nu]} \rho^i \cdot C_i \\
|
|
u' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot u_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot 1\\
|
|
\mathsf{x}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot \mathsf{x}_i\\
|
|
v_i' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot \sigma_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot \theta_i\\
|
|
\end{align*}
|
|
|
|
and \emph{step 8},
|
|
\begin{align*}
|
|
\widetilde{w}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i\cdot \widetilde{w}_i\\
|
|
r_w' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot r_{w_i}\\
|
|
\end{align*}
|
|
|
|
\end{frame}
|
|
|
|
\end{tiny}
|
|
|
|
\section[Wrappup]{Wrappup}
|
|
|
|
\begin{frame}
|
|
\frametitle{Wrappup}
|
|
\begin{itemize}
|
|
\item HyperNova: \href{https://eprint.iacr.org/2023/573}{https://eprint.iacr.org/2023/573}
|
|
\item multifolding PoC on arkworks: \href{https://github.com/privacy-scaling-explorations/multifolding-poc}{github.com/privacy-scaling-explorations/multifolding-poc}
|
|
\end{itemize}
|
|
|
|
\vspace{2cm}
|
|
\tiny{
|
|
$$\text{2023-06-22}$$
|
|
$$\text{\href{https://0xparc.org}{0xPARC} Novi team}$$
|
|
}
|
|
\end{frame}
|
|
|
|
\end{document}
|