|
|
\documentclass{beamer} % \usefonttheme[onlymath]{serif}
\mode<presentation> { \usetheme{Frankfurt} \usecolortheme{dove} %% grey scale
\useinnertheme{circles} \setbeamercovered{transparent} }
\hypersetup{ colorlinks, citecolor=black, filecolor=black, linkcolor=black, urlcolor=blue } \usepackage{graphicx} \usepackage{pgf-umlsd} % diagrams
\setbeamertemplate{itemize}{$\circ$} \setbeamertemplate{itemize items}{$\circ$}
\beamertemplatenavigationsymbolsempty %% no navigation bar
\setbeamertemplate{footline}{\hspace*{.1cm}\scriptsize{ \hspace*{50pt} \hfill\insertframenumber/\inserttotalframenumber\hspace*{.1cm}\vspace*{.1cm}}}
\setbeamertemplate{caption}[numbered] \setbeamerfont{caption}{size=\tiny}
% message between threads. From https://tex.stackexchange.com/a/174765
% Example:
% \bloodymess[delay]{sender}{message content}{receiver}{DIR}{start note}{end note}
\newcommand{\bloodymess}[7][0]{ \stepcounter{seqlevel} \path (#2)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess from) {}; \addtocounter{seqlevel}{#1} \path (#4)+(0,-\theseqlevel*\unitfactor-0.7*\unitfactor) node (mess to) {}; \draw[->,>=angle 60] (mess from) -- (mess to) node[midway, above] {#3};
\if R#5 \node (\detokenize{#3} from) at (mess from) {\llap{#6~}}; \node (\detokenize{#3} to) at (mess to) {\rlap{~#7}}; \else\if L#5 \node (\detokenize{#3} from) at (mess from) {\rlap{~#6}}; \node (\detokenize{#3} to) at (mess to) {\llap{#7~}}; \else \node (\detokenize{#3} from) at (mess from) {#6}; \node (\detokenize{#3} to) at (mess to) {#7}; \fi \fi }
%Information to be included in the title page:
\title{HyperNova's multifolding overview} \author{} \date{\scriptsize{2023-06-22\\\href{https://0xparc.org}{0xPARC} Novi team}}
\begin{document}
\frame{\titlepage}
\section[Overview]{Overview}
\begin{frame}{Multifolding - Overview}
\begin{tiny} \begin{enumerate} \item[1.] $V \rightarrow P: \gamma \in^R \mathbb{F},~ \beta \in^R \mathbb{F}^s$ \item[2.] $V: r_x' \in^R \mathbb{F}^s$ \item[3.] $V \leftrightarrow P$: sum-check protocol: $c \leftarrow \langle P, V(r_x') \rangle (g, s, d+1, \underbrace{\sum_{j \in [t]} \gamma^j \cdot v_j}_\text{T})$, where: \begin{align*} g(x) &:= \underbrace{\left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right)}_\text{LCCCS check} + \underbrace{\gamma^{t+1} \cdot Q(x)}_\text{CCCS check}\\ L_j(x) &:= \widetilde{eq}(r_x, x) \cdot \left( \underbrace{\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)}_\text{LCCCS check} \right)\\ Q(x) := &\widetilde{eq}(\beta, x) \cdot \left( \underbrace{ \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) }_\text{CCCS check} \right) \end{align*} \end{enumerate} \end{tiny}
\end{frame}
\begin{frame}{Multifolding - Overview}
\begin{tiny} \begin{enumerate} \item[4.] $P \rightarrow V$: $\left( (\sigma_1, \ldots, \sigma_t), (\theta_1, \ldots, \theta_t) \right)$, where $\forall j \in [t]$, $$\sigma_j = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_1(y)$$ $$\theta_j = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_2(y)$$ \item[5.] V: $e_1 \leftarrow \widetilde{eq}(r_x, r_x')$, $e_2 \leftarrow \widetilde{eq}(\beta, r_x')$\\ check: $$c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)$$ \item[6.] $V \rightarrow P: \rho \in^R \mathbb{F}$ \item[7.] $V, P$: output the folded LCCCS instance $(C', u', \mathsf{x}', r_x', v_1', \ldots, v_t')$, where $\forall i \in [t]$: \begin{align*} C' &\leftarrow C_1 + \rho \cdot C_2\\ u' &\leftarrow u + \rho \cdot 1\\ \mathsf{x}' &\leftarrow \mathsf{x}_1 + \rho \cdot \mathsf{x}_2\\ v_i' &\leftarrow \sigma_i + \rho \cdot \theta_i \end{align*} \item[8.] $P$: output folded witness and the folded $r_w'$: \begin{align*} \widetilde{w}' &\leftarrow \widetilde{w}_1 + \rho \cdot \widetilde{w}_2\\ r_w' &\leftarrow r_{w_1} + \rho \cdot r_{w_2} \end{align*} \end{enumerate} \end{tiny}
\end{frame}
\begin{frame}{Multifolding - Overview} \begin{tiny} \begin{center} \begin{sequencediagram} \newinst[1]{p}{Prover} \newinst[3]{v}{Verifier}
\bloodymess[1]{v}{$\gamma,~\beta,~r_x'$}{p}{L}{ \shortstack{ $\gamma \in \mathbb{F},~ \beta \in \mathbb{F}^s$\\ $r_x' \in \mathbb{F}^s$ } }{} \bloodymess[1]{p}{$c,~ \pi_{SC}$}{v}{R}{sum-check prove}{sum-check verify} \bloodymess[1]{p}{$\{\sigma_j\},~\{\theta_j\}$}{v}{R}{compute $\{\sigma_j\}, \{\theta_j\}~ \forall j \in [t]$}{verify $c$ with $\{\sigma_j\}, \{\theta_j\}$ relation} \bloodymess[1]{v}{$\rho$}{p}{L}{$\rho \in^R \mathbb{F}$}{} \callself[0]{p}{fold LCCCS instance}{p} \prelevel \callself[0]{v}{fold LCCCS instance}{v} \callself[0]{p}{fold $\widetilde{w}, r_w$}{p} \end{sequencediagram} \end{center} \end{tiny} \end{frame}
\section[Checks]{Checks}
\begin{tiny} \begin{frame}{LCCCS checks} $$
\color{gray}{g(x) :=} \color{black}{\underbrace{\left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right)}_\text{LCCCS} } \color{gray}{+ \gamma^{t+1} \cdot Q(x)} $$
$$
L_j(x) := \widetilde{eq}(r_x, x) \cdot \left( \underbrace{\sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y)}_\text{LCCCS check} \right) $$
Notice that, $v_j$ from LCCCS relation check
\begin{align*} v_j &= \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x, y) \cdot \widetilde{z}_1(y)\\ &= \sum_{x \in \{0,1\}^s} \widetilde{eq}(r_x, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) \right)\\ &= \sum_{x \in \{0,1\}^s} L_j(x) \end{align*} \end{frame} \begin{frame}{CCCS checks} $$
\color{gray}{g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) +} \color{black}{\underbrace{\gamma^{t+1} \cdot Q(x)}_\text{CCCS}} $$
$$Q(x) := \widetilde{eq}(\beta, x) \cdot \left(
\underbrace{ \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) }_\text{CCCS check} \right)$$
Recall that Spartan's $\widetilde{F}_{io}(x)$ here is $q(x)$, so we're doing the same Spartan check: $$
0 =G(\beta) = \sum_{x \in \{0,1\}^s} Q(x) = \sum_{x \in \{0,1\}^s} eq(\beta, x) \cdot q(x)$$
$$= \sum_{x \in \{0,1\}^s}
\underbrace{\widetilde{eq}(\beta , x) \cdot \overbrace{ \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_2(y) \right) }^{q(x)} }_{Q(x)} $$
\end{frame}
\begin{frame}{Verifier checks} \textcolor{gray}{ Recall: $$g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)$$ $$c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)$$ }
We can see now that V's check in step 5,
\begin{align*} c &= \left( \sum_{j \in [t]} \gamma^j \cdot \overbrace{e_1 \cdot \sigma_j}^{L_j(r_x')} \right) + \gamma^{t+1} \cdot \overbrace{e_2 \cdot \sum_{i \in [q]} c_i \prod_{j \in S_i} \theta_j}^{Q(x)}\\ &= \left( \sum_{j \in [t]} \gamma^j \cdot L_j(r_x') \right) + \gamma^{t+1} \cdot Q(r_x')\\ &= g(r_x') \end{align*}
where $e_1 = \widetilde{eq}(r_x, r_x')$, $e_2=\widetilde{eq}(\beta, r_x')$. \end{frame} \end{tiny}
\section[Multiple instances]{Multiple instances}
\begin{footnotesize} \begin{frame}{Multifolding multiple instances} Hypernova paper: $\mu=1, \nu=1$ \emph{(ie. 1 LCCCS instance and 1 CCCS instance)}
\vspace{1cm} In next slides \begin{itemize} \item example with: $\color{orange}{LCCCS: \mu = 2},~ \color{blue}{CCCS: \nu = 2}$ \item generalized equations for $\mu,~\nu$ \end{itemize}
Let $z_1,~ \color{orange}{z_2}$ be the two LCCCS instances, and $z_3,~ \color{blue}{z_4}$ be the two CCCS instances
\end{frame} \end{footnotesize}
\begin{tiny} \begin{frame} In \emph{step 3},
\begin{align*} g(x) &:= \left( \sum_{j \in [t]} \gamma^j \cdot L_{1,j}(x) + \textcolor{orange}{\gamma^{t+j} \cdot L_{2,j}(x)} \right) + \gamma^{2t+1} \cdot Q_1(x) + \textcolor{cyan}{\gamma^{2t+2} \cdot Q_2(x)} \\ &L_{1,j}(x) := \widetilde{eq}(r_{1,x}, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_1(y) \right)\\ &\textcolor{orange}{L_{2,j}(x)} := \widetilde{eq}(\textcolor{orange}{r_{2,x}}, x) \cdot \left( \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{orange}{\widetilde{z}_2(y)} \right)\\ &Q_1(x) := \widetilde{eq}(\beta, x) \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \widetilde{z}_3(y) \right)\right)\\ &\textcolor{cyan}{Q_2(x)} := \widetilde{eq}(\textcolor{cyan}{\beta}, x) \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \left( \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(x, y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)} \right)\right) \end{align*}
\framebox{\begin{minipage}{4.3 in} A generic definition of $g(x)$ for $\mu>1~\nu>1$, would be
$$
g(x) := \left( \sum_{i \in [\mu]} \left( \sum_{j \in [t]} \gamma^{i \cdot t+j} \cdot L_{i,j}(x) \right) \right) + \left( \sum_{i \in [\nu]} \gamma^{\mu \cdot t + i} \cdot Q_i(x) \right) $$
\end{minipage}}
Recall, the original $g(x)$ definition was $$\textcolor{gray}{g(x) := \left( \sum_{j \in [t]} \gamma^j \cdot L_j(x) \right) + \gamma^{t+1} \cdot Q(x)}$$
\end{frame}
\begin{frame} In \emph{step 4}, $P \rightarrow V$: $(\{\sigma_{1,j}\}, \textcolor{orange}{\{\sigma_{2,j}\}}, \{\theta_{1,j}\}, \textcolor{cyan}{\{\theta_{2,j}\}}),~ \text{where} ~\forall j \in [t]$,
$$\sigma_{1,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_1(y)$$ $$\textcolor{orange}{\sigma_{2,j}} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{orange}{\widetilde{z}_2(y)}$$ $$\theta_{1,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_3(y)$$ $$\textcolor{cyan}{\theta_{2,j}} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \textcolor{cyan}{\widetilde{z}_4(y)}$$
\framebox{\begin{minipage}{4.3 in} so in a generic way,\\ $P \rightarrow V$: $(\{\sigma_{i,j}\}, \{\theta_{k,j}\}),~ \text{where} ~\forall~ j \in [t],~ \forall~ i \in [\mu],~ \forall~ k \in [\nu]$ where $$\sigma_{i,j} = \sum_{y \in \{0,1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_i(y)$$ $$\theta_{k,j} = \sum_{y \in \{0, 1\}^{s'}} \widetilde{M}_j(r_x', y) \cdot \widetilde{z}_{\mu+k}(y)$$ \end{minipage}}
\end{frame}
\begin{frame} And in \emph{step 5}, $V$ checks
\begin{align*} c &= \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_{1,j} ~\textcolor{orange}{+ \gamma^{t+j} \cdot e_2 \cdot \sigma_{2,j}}\right) + \gamma^{2t+1} \cdot e_3 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right) + \textcolor{cyan}{\gamma^{2t+2} \cdot e_4 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)} \end{align*}
where $e_1 \leftarrow \widetilde{eq}(r_{1,x}, r_x'),~ e_2 \leftarrow \widetilde{eq}(r_{2,x}, r_x')$, $e_3, e_4 \leftarrow \widetilde{eq}(\beta, r_x')$.
\vspace{0.5cm}
\framebox{\begin{minipage}{4.3 in} A generic definition of the check would be $$
c = \sum_{i \in [\mu]} \left(\sum_{j \in [t]} \gamma^{i \cdot t + j} \cdot e_i \cdot \sigma_{i,j} \right) \\ + \sum_{k \in [\nu]} \gamma^{\mu \cdot t+k} \cdot e_k \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_{k,j} \right) $$
\end{minipage}}
where the original check was\\ $\textcolor{gray}{c = \left(\sum_{j \in [t]} \gamma^j \cdot e_1 \cdot \sigma_j \right) + \gamma^{t+1} \cdot e_2 \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i} \theta_j \right)}$
\end{frame}
\begin{frame} And for the \emph{step 7}, \begin{align*} C' &\leftarrow C_1 + \rho \cdot C_2 + \rho^2 C_3 + \rho^3 C_4 + \ldots = \sum_{i \in [\mu + \nu]} \rho^i \cdot C_i \\ u' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot u_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot 1\\ \mathsf{x}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot \mathsf{x}_i\\ v_i' &\leftarrow \sum_{i \in [\mu]} \rho^i \cdot \sigma_i + \sum_{i \in [\nu]} \rho^{\mu + i-1} \cdot \theta_i\\ \end{align*}
and \emph{step 8}, \begin{align*} \widetilde{w}' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i\cdot \widetilde{w}_i\\ r_w' &\leftarrow \sum_{i \in [\mu+\nu]} \rho^i \cdot r_{w_i}\\ \end{align*}
\end{frame}
\end{tiny}
\section[Wrappup]{Wrappup}
\begin{frame} \frametitle{Wrappup} \begin{itemize} \item HyperNova: \href{https://eprint.iacr.org/2023/573}{https://eprint.iacr.org/2023/573} \item multifolding PoC on arkworks: \href{https://github.com/privacy-scaling-explorations/multifolding-poc}{github.com/privacy-scaling-explorations/multifolding-poc} \end{itemize}
\vspace{2cm} \tiny{ $$\text{2023-06-22}$$ $$\text{\href{https://0xparc.org}{0xPARC} Novi team}$$ } \end{frame}
\end{document}
|