\documentclass[t]{beamer}
|
|
\usefonttheme[onlymath]{serif}
|
|
|
|
\mode<presentation>
|
|
{
|
|
\usetheme{Frankfurt}
|
|
\usecolortheme{dove} %% grey scale
|
|
\useinnertheme{circles}
|
|
% \setbeamercovered{transparent}
|
|
}
|
|
|
|
\hypersetup{
|
|
colorlinks,
|
|
citecolor=black,
|
|
filecolor=black,
|
|
linkcolor=black,
|
|
urlcolor=blue
|
|
}
|
|
\usepackage{graphicx}
|
|
|
|
\graphicspath{ {../folding/sonobe-docs/src/imgs} }
|
|
|
|
\usepackage{listings} % embed code
|
|
|
|
\setbeamertemplate{itemize}{$\circ$}
|
|
\setbeamertemplate{itemize items}{$\circ$}
|
|
|
|
\beamertemplatenavigationsymbolsempty %% no navigation bar
|
|
|
|
\setbeamertemplate{footline}{\hspace*{.1cm}\scriptsize{
|
|
\hspace*{50pt} \hfill\insertframenumber/\inserttotalframenumber\hspace*{.1cm}\vspace*{.1cm}}}
|
|
|
|
\setbeamertemplate{caption}[numbered]
|
|
\setbeamerfont{caption}{size=\tiny}
|
|
|
|
|
|
|
|
|
|
\title{Anatomy of a folding scheme}
|
|
\author{\small{Sonobe, experimental folding schemes library implemented jointly by \href{https://0xparc.org}{0xPARC} and \href{https://pse.dev/}{PSE.}}}
|
|
|
|
\date{\vspace{1cm}\\\scriptsize{2024-04-22\\Barcelona zkDay}}
|
|
|
|
\begin{document}
|
|
|
|
\frame{\titlepage}
|
|
|
|
|
|
% To mention at the beginning:
|
|
% we would need more than 2h to show a bit of more detail, but we only have 20min
|
|
|
|
|
|
\section[Motivation]{Motivation}
|
|
|
|
\begin{frame}{Why folding}
|
|
\begin{itemize}
|
|
\item Repetitive computations take big circuits $\longrightarrow$ large proving time
|
|
\begin{itemize}
|
|
\item ie. prove a chain of 10k sha256 hashes
|
|
\end{itemize}
|
|
|
|
% \pause
|
|
|
|
\item Traditional recursion: verify (in-circuit) a proof of the correct execution of the same circuit for the previous input
|
|
\begin{itemize}
|
|
\item issue: in-circuit proof verification is expensive (constraints)
|
|
\begin{itemize}
|
|
\item ie. verify a Groth16 proof inside a R1CS circuit
|
|
\end{itemize}
|
|
\end{itemize}
|
|
\end{itemize}
|
|
|
|
% draw: G16 proof being verified inside a circuit for which a new proof is generated
|
|
\end{frame}
|
|
|
|
\begin{frame}{IVC - Incremental Verifiable Computation}
|
|
Folding schemes efficitently achieve IVC, where the prover recursively proves the correct execution of the incremental computations.
|
|
|
|
\includegraphics[width=\textwidth]{folding-main-idea-diagram}
|
|
|
|
In other words, it allows to prove efficiently that $z_n = F(...~F(F(F(F(z_0, w_0), w_1), w_2), ...), w_{n-1})$.
|
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}{Folding idea}
|
|
% draw of 2 instances being folded into a single one
|
|
% then add other instances to show k-to-1 folding
|
|
\end{frame}
|
|
|
|
|
|
\section[Folding]{Folding}
|
|
\begin{frame}{Homomorphic commitments and RLC}
|
|
We rely on homomorphic commitments\\
|
|
ie. Pedersen commitments\\
|
|
Let $g \in \mathbb{G}^n,~ v \in \mathbb{F}_r^n$,\\
|
|
$$Com(v) = \langle g, v \rangle =g_1 \cdot v_1 + g_2 \cdot v_2 + \ldots + g_n \cdot v_n$$
|
|
|
|
% \pause
|
|
|
|
RLC:\\
|
|
Let $v_1, v_2 \in \mathbb{F}_r^n$, set $cm_1 = Com(v_1),~ cm_2=Com(v_2)$.
|
|
\\then,
|
|
\begin{align*}
|
|
v_3 &= v_1 + r \cdot v_2\\
|
|
cm_3 &=cm_1 + r \cdot cm_2
|
|
\end{align*}
|
|
\\so that
|
|
$$cm_3 = Com(v_3)$$
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}{Relaxed R1CS}
|
|
R1CS instance: $(\{A, B, C\} \in \mathbb{F}^{n \times n},~ io,~ n,~ l)$, such that for $z=(io \in \mathbb{F}^l, 1, w \in \mathbb{F}^{n-l-1}) \in \mathbb{F}^n$,
|
|
|
|
$$Az \circ Bz = Cz$$
|
|
|
|
% \pause
|
|
|
|
Relaxed R1CS:
|
|
|
|
$$Az \circ Bz = uCz + E$$
|
|
|
|
for $u \in \mathbb{F},~~ E \in \mathbb{F}^n$.
|
|
|
|
\vspace{1cm}
|
|
|
|
Committed Relaxed R1CS instance: $CI = (\overline{E}, u, \overline{W}, x)$\\
|
|
Witness of the instance: $WI=(E, W)$
|
|
|
|
\vspace{0.5cm}
|
|
\footnotesize{(We don't have time for it now, but there is a simple reasoning for the RelaxedR1CS usage explained in Nova paper)}
|
|
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}{NIFS - Non Interactive Folding Scheme}
|
|
\scriptsize{
|
|
\begin{align*}
|
|
CI_1 &=(\overline{E}_1 \in \mathbb{G}, u_1 \in \mathbb{F}, \overline{W}_1 \in \mathbb{G}, x_1 \in \mathbb{F}^n) ~~~~~~WI_1=(E_1 \in \mathbb{F}^n, W_1 \in \mathbb{F}^n)\\
|
|
CI_2 &=(\overline{E}_2, u_2, \overline{W}_2, x_2) ~~~~~~WI_2=(E_2, W_2)
|
|
\end{align*}
|
|
where $\overline{V}=Com(V)$
|
|
|
|
|
|
% \pause
|
|
|
|
\begin{align*}
|
|
T &= Az_1 \circ Bz_1 + Az_2 \circ Bz_2 - u_1 C z_1 - u_2 C z_2\\
|
|
\overline{T}&=Com(T)
|
|
\end{align*}
|
|
% \pause
|
|
|
|
\begin{minipage}[t]{.45\textwidth}
|
|
NIFS.P
|
|
\begin{align*}
|
|
E &= E_1 + r \cdot T + r^2 \cdot E_2\\
|
|
W &= W_1 + r \cdot W
|
|
\end{align*}
|
|
\end{minipage}
|
|
\hfill\vline\hfill
|
|
\begin{minipage}[t]{.45\textwidth}
|
|
NIFS.V
|
|
\begin{align*}
|
|
\overline{E} &= \overline{E}_1 + r \cdot \overline{T} + r^2 \cdot \overline{E}_2\\
|
|
u &= u_1 + r \cdot u_2\\
|
|
\overline{W} &= \overline{W}_1 + r \cdot \overline{W}\\
|
|
x &= x_1 + r \cdot x_2
|
|
\end{align*}
|
|
\end{minipage}
|
|
|
|
New folded Committed Instance: $(\overline{E}, u, \overline{W}, x)$\\
|
|
New folded witness: $(E, W)$
|
|
}
|
|
\end{frame}
|
|
|
|
\begin{frame}{IVC}
|
|
\small{
|
|
$U_i$: committed instance for the correct execution of invocations $1, \ldots, i-1$ of $F'$\\
|
|
$u_i$: committed instance for the correct execution of invocation $i$ of $F'$
|
|
}
|
|
|
|
% draw: sketch of the Augmented F Circuit
|
|
% big box for F', inside small box for F. NIFS.V box, how things connect to next iteration
|
|
|
|
\vspace{4cm}
|
|
|
|
\small{
|
|
F':\\
|
|
i) execute a step of the incremental computation, $z_{i+1} = F(z_i)$\\
|
|
ii) invoke the NIFS.V to fold $U_i, u_i$ into $U_{i+1}$\\
|
|
iii) other checks to ensure that the IVC is done properly
|
|
}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Cycle of curves}
|
|
\small{
|
|
NIFS.V involves $\mathbb{G}$ point scalar mults, which are not native over $\mathbb{F}_r$.
|
|
\\$\longrightarrow$ delegate them into a circuit over a 2nd curve.
|
|
|
|
\vspace{0.3cm}
|
|
|
|
We 'mirror' the main $F'$ circuit into the 2nd curve\\
|
|
each circuit computes natively the point operations of the other curve
|
|
}
|
|
|
|
% draw:
|
|
% 1st the Nova with duplicated F' circuits over 2 curves
|
|
% 2nd the Nova with CycleFold circuits sketch
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}{Augmented F Circuit + CycleFold Circuit}
|
|
\includegraphics[width=\textwidth]{cyclefold-nova-diagram}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Other Folding Schemes}
|
|
% TODO
|
|
% HyperNova
|
|
% ProtoGalaxy
|
|
% ProtoStar
|
|
% LatticeFold
|
|
% etc
|
|
% mention a bit the different characteristics and folding techniques
|
|
\end{frame}
|
|
|
|
\section{Decider (Final Proof)}
|
|
|
|
\begin{frame}{Decider}
|
|
\includegraphics[width=\textwidth]{cyclefold-paper-diagram}
|
|
|
|
With Prover knowing the respective witnesses for $U_n, u_n, U_{EC,n}$
|
|
|
|
\vspace{1cm}
|
|
|
|
Issue: IVC proof is not succinct
|
|
\end{frame}
|
|
|
|
\begin{frame}{Decider}
|
|
Original Nova: generate a zkSNARK proof with Spartan for $U_n, u_n, U_{EC, n}$\\
|
|
$\longrightarrow$ 2 Spartan proofs, one on each curve (with CycleFold is 1 Spartan proof)\\
|
|
(not EVM-friendly)
|
|
|
|
% draw of the 2 circuits over the curves, and how we generate a Spartan proof for each one
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}{Decider}
|
|
checks (simplified)
|
|
\begin{enumerate}
|
|
\item $(U_{n+1}, W_{n+1})$ satisfy Relaxed R1CS relation of AugmentedFCircuit
|
|
\item verify commitments of $U_{n+1}.\{\overline{E}, \overline{W}\}$ w.r.t. $W_{n+1}.\{E,W\}$
|
|
\item $(U_{EC,n}, W_{EC,n})$ satisfy Relaxed R1CS relation of CycleFoldCircuit
|
|
\item verify commitments of $U_{EC,n}.\{\overline{E}, \overline{W}\}$ w.r.t. $W_{EC,n}.\{E,W\}$
|
|
\item $u_n.E==0,~ u_n.u==1$, ie. $u_n$ is a fresh not-relaxed instance
|
|
\item $u_n.x_0==H(n, z_0, z_n, U_n)$\\
|
|
$u_n.x_1==H(U_{EC,n})$
|
|
\item $NIFS.V(U_n, u_n)==U_{n+1}$
|
|
\end{enumerate}
|
|
|
|
% by draw show which are native and not native
|
|
% and that the NIFS.V we do it in Solidity
|
|
\end{frame}
|
|
|
|
\begin{frame}{Decider}
|
|
\includegraphics[width=\textwidth]{decider-onchain-flow-diagram}
|
|
% draw of the full flow: from inputting the circuit, to folding to generating the Decider proof to verifying in Ethereum
|
|
\end{frame}
|
|
|
|
\section{Sonobe}
|
|
\begin{frame}{Sonobe}
|
|
\footnotesize{
|
|
Experimental folding schemes library implemented jointly by 0xPARC and PSE.
|
|
|
|
\vspace{0.3cm}
|
|
|
|
Dev flow:
|
|
\begin{enumerate}
|
|
\item Define a circuit to be folded
|
|
\item Set which folding scheme to be used (eg. Nova with CycleFold)
|
|
\item Set a final decider to generate the final proof (eg. Spartan over Pasta curves)
|
|
\item Generate the the decider verifier
|
|
\end{enumerate}
|
|
}
|
|
|
|
\vspace{1cm}
|
|
|
|
\includegraphics[width=\textwidth]{sonobe-lib-pipeline}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Code example}
|
|
[show code with a live demo]
|
|
\vspace{0.5cm}
|
|
|
|
Some numbers (still optimizations pending):
|
|
\begin{itemize}
|
|
\item AugmentedFCircuit: $\sim 80k$ R1CS constraints
|
|
\item DeciderEthCircuit: $\sim 9.6M$ R1CS constraints
|
|
\begin{itemize}
|
|
\item $<3$ minutes in a 32GB RAM 16 core laptop
|
|
\end{itemize}
|
|
\item gas costs (DeciderEthCircuit proof): $\sim 800k$ gas
|
|
\begin{itemize}
|
|
\item mostly from G16, KZG10, public inputs processing
|
|
\item will be reduced by hashing the public inputs
|
|
\item expect to get it down to $< 600k$ gas.
|
|
\end{itemize}
|
|
\end{itemize}
|
|
|
|
\vspace{0.3cm}
|
|
|
|
Recall, this proof is proving that applying $n$ times the function $F$ (the circuit that we're folding) to an initial state $z_0$ results in the state $z_n$.
|
|
\\In Srinath Setty words, you can prove practically unbounded computation onchain by 800k gas (and soon $< 600k$).
|
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}
|
|
\frametitle{Wrappup}
|
|
\begin{itemize}
|
|
\item \href{https://github.com/privacy-scaling-explorations/sonobe}{https://github.com/privacy-scaling-explorations/sonobe}
|
|
\item \href{https://privacy-scaling-explorations.github.io/sonobe-docs/}{https://privacy-scaling-explorations.github.io/sonobe-docs/}
|
|
\end{itemize}
|
|
|
|
\begin{center}
|
|
\includegraphics[width=4cm]{qr-sonobe-repo-link}
|
|
\end{center}
|
|
|
|
\tiny{
|
|
$$\text{2024-04-22}$$
|
|
$$\text{\href{https://0xparc.org}{0xPARC}~\&~\href{https://pse.dev/}{PSE.}}$$
|
|
}
|
|
\end{frame}
|
|
|
|
\end{document}
|