Browse Source

feat: Merklepathset & Merkle tree

al-gkr-basic-workflow
Al-Kindi-0 2 years ago
parent
commit
22cf7aba44
6 changed files with 684 additions and 0 deletions
  1. +12
    -0
      crypto/Cargo.toml
  2. +1
    -0
      crypto/src/hash/mod.rs
  3. +12
    -0
      crypto/src/lib.rs
  4. +356
    -0
      crypto/src/merkle/merkle_path_set.rs
  5. +261
    -0
      crypto/src/merkle/merkle_tree.rs
  6. +42
    -0
      crypto/src/merkle/mod.rs

+ 12
- 0
crypto/Cargo.toml

@ -0,0 +1,12 @@
[package]
name = "crypto"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
winterfell = { git = "https://github.com/novifinancial/winterfell"}
winter_utils = { version = "0.4", package = "winter-utils" }
rand_utils = { version = "0.4", package = "winter-rand-utils" }
proptest = "1.0.0"

+ 1
- 0
crypto/src/hash/mod.rs

@ -0,0 +1 @@

+ 12
- 0
crypto/src/lib.rs

@ -0,0 +1,12 @@
pub use winterfell::math::{
fields::{f64::BaseElement as Felt, QuadExtension},
ExtensionOf, FieldElement, StarkField,
};
pub(crate) mod hash;
pub(crate) mod merkle;
// TYPE ALIASES
// ================================================================================================
pub type Word = [Felt; 4];

+ 356
- 0
crypto/src/merkle/merkle_path_set.rs

@ -0,0 +1,356 @@
use std::collections::BTreeMap;
use super::{merge, Felt, FieldElement, MerkleError, Word};
// MERKLE PATH SET
// ================================================================================================
/// A set of Merkle paths.
///
/// This struct is intended to be used as one of the variants of the MerkleSet enum.
#[derive(Clone, Debug)]
pub struct MerklePathSet {
root: Word,
total_depth: u32,
paths: BTreeMap<u64, Vec<Word>>,
}
impl MerklePathSet {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Returns an empty MerklePathSet.
pub fn new(depth: u32) -> Result<Self, MerkleError> {
let root = [Felt::ZERO; 4];
let paths = BTreeMap::<u64, Vec<Word>>::new();
Ok(Self {
root,
total_depth: depth,
paths,
})
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Adds the specified Merkle path to this [MerklePathSet]. The `index` and `value` parameters
/// specify the leaf node at which the path starts.
///
/// # Errors
/// Returns an error if:
/// - The specified index is not valid in the context of this Merkle path set (i.e., the index
/// implies a greater depth than is specified for this set).
/// - The specified path is not consistent with other paths in the set (i.e., resolves to a
/// different root).
pub fn add_path(
&mut self,
index: u64,
value: Word,
path: Vec<Word>,
) -> Result<(), MerkleError> {
let depth = (path.len() + 1) as u32;
if depth != self.total_depth {
return Err(MerkleError::InvalidDepth(self.total_depth, depth));
}
// Actual number of node in tree
let pos = 2u64.pow(self.total_depth) + index;
// Index of the leaf path in map. Paths of neighboring leaves are stored in one key-value pair
let half_pos = (pos / 2) as u64;
let mut extended_path = path;
if is_even(pos) {
extended_path.insert(0, value);
} else {
extended_path.insert(1, value);
}
let root_of_current_path = compute_path_root(&extended_path, depth, index);
if self.root == [Felt::ZERO; 4] {
self.root = root_of_current_path;
} else if self.root != root_of_current_path {
return Err(MerkleError::InvalidPath(extended_path));
}
self.paths.insert(half_pos, extended_path);
Ok(())
}
/// Returns the root to which all paths in this set resolve.
pub fn root(&self) -> Word {
self.root
}
/// Returns the depth of the Merkle tree implied by the paths stored in this set.
///
/// Merkle tree of depth 1 has two leaves, depth 2 has four leaves etc.
pub fn depth(&self) -> u32 {
self.total_depth
}
/// Returns a node at the specified index.
///
/// # Errors
/// Returns an error if:
/// * The specified index not valid for the depth of structure.
/// * Requested node does not exist in the set.
pub fn get_node(&self, depth: u32, index: u64) -> Result<Word, MerkleError> {
if index >= 2u64.pow(self.total_depth) {
return Err(MerkleError::InvalidIndex(self.total_depth, index));
}
if depth != self.total_depth {
return Err(MerkleError::InvalidDepth(self.total_depth, depth));
}
let pos = 2u64.pow(depth) + index;
let index = (pos / 2) as u64;
match self.paths.get(&index) {
None => Err(MerkleError::NodeNotInSet(index)),
Some(path) => {
if is_even(pos) {
Ok(path[0])
} else {
Ok(path[1])
}
}
}
}
/// Returns a Merkle path to the node at the specified index. The node itself is
/// not included in the path.
///
/// # Errors
/// Returns an error if:
/// * The specified index not valid for the depth of structure.
/// * Node of the requested path does not exist in the set.
pub fn get_path(&self, depth: u32, index: u64) -> Result<Vec<Word>, MerkleError> {
if index >= 2u64.pow(self.total_depth) {
return Err(MerkleError::InvalidIndex(self.total_depth, index));
}
if depth != self.total_depth {
return Err(MerkleError::InvalidDepth(self.total_depth, depth));
}
let pos = 2u64.pow(depth) + index;
let index = pos / 2;
match self.paths.get(&index) {
None => Err(MerkleError::NodeNotInSet(index)),
Some(path) => {
let mut local_path = path.clone();
if is_even(pos) {
local_path.remove(0);
Ok(local_path)
} else {
local_path.remove(1);
Ok(local_path)
}
}
}
}
/// Replaces the leaf at the specified index with the provided value.
///
/// # Errors
/// Returns an error if:
/// * Requested node does not exist in the set.
pub fn update_leaf(&mut self, index: u64, value: Word) -> Result<(), MerkleError> {
let depth = self.depth();
if index >= 2u64.pow(depth) {
return Err(MerkleError::InvalidIndex(depth, index));
}
let pos = 2u64.pow(depth) + index;
let path = match self.paths.get_mut(&(pos / 2)) {
None => return Err(MerkleError::NodeNotInSet(index)),
Some(path) => path,
};
// Fill old_hashes vector -----------------------------------------------------------------
let (old_hashes, _) = compute_path_trace(path, depth, index);
// Fill new_hashes vector -----------------------------------------------------------------
if is_even(pos) {
path[0] = value;
} else {
path[1] = value;
}
let (new_hashes, new_root) = compute_path_trace(path, depth, index);
self.root = new_root;
// update paths ---------------------------------------------------------------------------
for path in self.paths.values_mut() {
for i in (0..old_hashes.len()).rev() {
if path[i + 2] == old_hashes[i] {
path[i + 2] = new_hashes[i];
break;
}
}
}
Ok(())
}
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn is_even(pos: u64) -> bool {
pos & 1 == 0
}
/// Calculates the hash of the parent node by two sibling ones
/// - node — current node
/// - node_pos — position of the current node
/// - sibling — neighboring vertex in the tree
fn calculate_parent_hash(node: Word, node_pos: u64, sibling: Word) -> Word {
if is_even(node_pos) {
merge(&[node.into(), sibling.into()]).into()
} else {
merge(&[sibling.into(), node.into()]).into()
}
}
/// Returns vector of hashes from current to the root
fn compute_path_trace(path: &[Word], depth: u32, index: u64) -> (Vec<Word>, Word) {
let mut pos = 2u64.pow(depth) + index;
let mut computed_hashes = Vec::<Word>::new();
let mut comp_hash = merge(&[path[0].into(), path[1].into()]).into();
if path.len() != 2 {
for path_hash in path.iter().skip(2) {
computed_hashes.push(comp_hash);
pos /= 2;
comp_hash = calculate_parent_hash(comp_hash, pos, *path_hash);
}
}
(computed_hashes, comp_hash)
}
/// Returns hash of the root
fn compute_path_root(path: &[Word], depth: u32, index: u64) -> Word {
let mut pos = 2u64.pow(depth) + index;
// hash that is obtained after calculating the current hash and path hash
let mut comp_hash = merge(&[path[0].into(), path[1].into()]).into();
for path_hash in path.iter().skip(2) {
pos /= 2;
comp_hash = calculate_parent_hash(comp_hash, pos, *path_hash);
}
comp_hash
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::calculate_parent_hash;
use super::{Felt, FieldElement, Word};
#[test]
fn get_root() {
let leaf0 = int_to_node(0);
let leaf1 = int_to_node(1);
let leaf2 = int_to_node(2);
let leaf3 = int_to_node(3);
let parent0 = calculate_parent_hash(leaf0, 0, leaf1);
let parent1 = calculate_parent_hash(leaf2, 2, leaf3);
let root_exp = calculate_parent_hash(parent0, 0, parent1);
let mut set = super::MerklePathSet::new(3).unwrap();
set.add_path(0, leaf0, vec![leaf1, parent1]).unwrap();
assert_eq!(set.root(), root_exp);
}
#[test]
fn add_and_get_path() {
let path_6 = vec![int_to_node(7), int_to_node(45), int_to_node(123)];
let hash_6 = int_to_node(6);
let index = 6u64;
let depth = 4u32;
let mut set = super::MerklePathSet::new(depth).unwrap();
set.add_path(index, hash_6, path_6.clone()).unwrap();
let stored_path_6 = set.get_path(depth, index).unwrap();
assert_eq!(path_6, stored_path_6);
assert!(set.get_path(depth, 15u64).is_err())
}
#[test]
fn get_node() {
let path_6 = vec![int_to_node(7), int_to_node(45), int_to_node(123)];
let hash_6 = int_to_node(6);
let index = 6u64;
let depth = 4u32;
let mut set = super::MerklePathSet::new(depth).unwrap();
set.add_path(index, hash_6, path_6).unwrap();
assert_eq!(int_to_node(6u64), set.get_node(depth, index).unwrap());
assert!(set.get_node(depth, 15u64).is_err());
}
#[test]
fn update_leaf() {
let hash_4 = int_to_node(4);
let hash_5 = int_to_node(5);
let hash_6 = int_to_node(6);
let hash_7 = int_to_node(7);
let hash_45 = calculate_parent_hash(hash_4, 12u64, hash_5);
let hash_67 = calculate_parent_hash(hash_6, 14u64, hash_7);
let hash_0123 = int_to_node(123);
let path_6 = vec![hash_7, hash_45, hash_0123];
let path_5 = vec![hash_4, hash_67, hash_0123];
let path_4 = vec![hash_5, hash_67, hash_0123];
let index_6 = 6u64;
let index_5 = 5u64;
let index_4 = 4u64;
let depth = 4u32;
let mut set = super::MerklePathSet::new(depth).unwrap();
set.add_path(index_6, hash_6, path_6).unwrap();
set.add_path(index_5, hash_5, path_5).unwrap();
set.add_path(index_4, hash_4, path_4).unwrap();
let new_hash_6 = int_to_node(100);
let new_hash_5 = int_to_node(55);
set.update_leaf(index_6, new_hash_6).unwrap();
let new_path_4 = set.get_path(depth, index_4).unwrap();
let new_hash_67 = calculate_parent_hash(new_hash_6, 14u64, hash_7);
assert_eq!(new_hash_67, new_path_4[1]);
set.update_leaf(index_5, new_hash_5).unwrap();
let new_path_4 = set.get_path(depth, index_4).unwrap();
let new_path_6 = set.get_path(depth, index_6).unwrap();
let new_hash_45 = calculate_parent_hash(new_hash_5, 13u64, hash_4);
assert_eq!(new_hash_45, new_path_6[1]);
assert_eq!(new_hash_5, new_path_4[0]);
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
const fn int_to_node(value: u64) -> Word {
[Felt::new(value), Felt::ZERO, Felt::ZERO, Felt::ZERO]
}
}

+ 261
- 0
crypto/src/merkle/merkle_tree.rs

@ -0,0 +1,261 @@
use core::slice;
use super::Digest;
use winter_utils::uninit_vector;
use winterfell::math::log2;
use crate::{Felt, FieldElement, Word};
use super::{merge, MerkleError};
// MERKLE TREE
// ================================================================================================
/// A fully-balanced binary Merkle tree (i.e., a tree where the number of leaves is a power of two).
///
/// This struct is intended to be used as one of the variants of the MerkleSet enum.
#[derive(Clone, Debug)]
pub struct MerkleTree {
nodes: Vec<Word>,
}
impl MerkleTree {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Returns a Merkle tree instantiated from the provided leaves.
///
/// # Errors
/// Returns an error if the number of leaves is smaller than two or is not a power of two.
pub fn new(leaves: Vec<Word>) -> Result<Self, MerkleError> {
let n = leaves.len();
if n <= 1 {
return Err(MerkleError::DepthTooSmall);
} else if !n.is_power_of_two() {
return Err(MerkleError::NumLeavesNotPowerOfTwo(n));
}
// create un-initialized vector to hold all tree nodes
let mut nodes = unsafe { uninit_vector(2 * n) };
nodes[0] = [Felt::ZERO; 4];
// copy leaves into the second part of the nodes vector
nodes[n..].copy_from_slice(&leaves);
// re-interpret nodes as an array of two nodes fused together
let two_nodes = unsafe { slice::from_raw_parts(nodes.as_ptr() as *const [Digest; 2], n) };
// calculate all internal tree nodes
for i in (1..n).rev() {
nodes[i] = merge(&two_nodes[i]).into();
}
Ok(Self { nodes })
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub fn root(&self) -> Word {
self.nodes[1]
}
/// Returns the depth of this Merkle tree.
///
/// Merkle tree of depth 1 has two leaves, depth 2 has four leaves etc.
pub fn depth(&self) -> u32 {
log2(self.nodes.len() / 2)
}
/// Returns a node at the specified depth and index.
///
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
/// * The specified index not valid for the specified depth.
pub fn get_node(&self, depth: u32, index: u64) -> Result<Word, MerkleError> {
if depth == 0 {
return Err(MerkleError::DepthTooSmall);
} else if depth > self.depth() {
return Err(MerkleError::DepthTooBig(depth));
}
if index >= 2u64.pow(depth) {
return Err(MerkleError::InvalidIndex(depth, index));
}
let pos = 2usize.pow(depth as u32) + (index as usize);
Ok(self.nodes[pos])
}
/// Returns a Merkle path to the node at the specified depth and index. The node itself is
/// not included in the path.
///
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
/// * The specified index not valid for the specified depth.
pub fn get_path(&self, depth: u32, index: u64) -> Result<Vec<Word>, MerkleError> {
if depth == 0 {
return Err(MerkleError::DepthTooSmall);
} else if depth > self.depth() {
return Err(MerkleError::DepthTooBig(depth));
}
if index >= 2u64.pow(depth) {
return Err(MerkleError::InvalidIndex(depth, index));
}
let mut path = Vec::with_capacity(depth as usize);
let mut pos = 2usize.pow(depth as u32) + (index as usize);
while pos > 1 {
path.push(self.nodes[pos ^ 1]);
pos >>= 1;
}
Ok(path)
}
/// Replaces the leaf at the specified index with the provided value.
///
/// # Errors
/// Returns an error if the specified index is not a valid leaf index for this tree.
pub fn update_leaf(&mut self, index: u64, value: Word) -> Result<(), MerkleError> {
let depth = self.depth();
if index >= 2u64.pow(depth) {
return Err(MerkleError::InvalidIndex(depth, index));
}
let mut index = 2usize.pow(depth) + index as usize;
self.nodes[index] = value;
let n = self.nodes.len() / 2;
let two_nodes =
unsafe { slice::from_raw_parts(self.nodes.as_ptr() as *const [Digest; 2], n) };
for _ in 0..depth {
index /= 2;
self.nodes[index] = merge(&two_nodes[index]).into();
}
Ok(())
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::{Felt, FieldElement, Word};
use winterfell::crypto::{hashers::Rp64_256, ElementHasher, Hasher};
const LEAVES4: [Word; 4] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
];
const LEAVES8: [Word; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
];
#[test]
fn build_merkle_tree() {
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
assert_eq!(8, tree.nodes.len());
// leaves were copied correctly
for (a, b) in tree.nodes.iter().skip(4).zip(LEAVES4.iter()) {
assert_eq!(a, b);
}
let (root, node2, node3) = compute_internal_nodes();
assert_eq!(root, tree.nodes[1]);
assert_eq!(node2, tree.nodes[2]);
assert_eq!(node3, tree.nodes[3]);
assert_eq!(root, tree.root());
}
#[test]
fn get_leaf() {
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
// check depth 2
assert_eq!(LEAVES4[0], tree.get_node(2, 0).unwrap());
assert_eq!(LEAVES4[1], tree.get_node(2, 1).unwrap());
assert_eq!(LEAVES4[2], tree.get_node(2, 2).unwrap());
assert_eq!(LEAVES4[3], tree.get_node(2, 3).unwrap());
// check depth 1
let (_, node2, node3) = compute_internal_nodes();
assert_eq!(node2, tree.get_node(1, 0).unwrap());
assert_eq!(node3, tree.get_node(1, 1).unwrap());
}
#[test]
fn get_path() {
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
let (_, node2, node3) = compute_internal_nodes();
// check depth 2
assert_eq!(vec![LEAVES4[1], node3], tree.get_path(2, 0).unwrap());
assert_eq!(vec![LEAVES4[0], node3], tree.get_path(2, 1).unwrap());
assert_eq!(vec![LEAVES4[3], node2], tree.get_path(2, 2).unwrap());
assert_eq!(vec![LEAVES4[2], node2], tree.get_path(2, 3).unwrap());
// check depth 1
assert_eq!(vec![node3], tree.get_path(1, 0).unwrap());
assert_eq!(vec![node2], tree.get_path(1, 1).unwrap());
}
#[test]
fn update_leaf() {
let mut tree = super::MerkleTree::new(LEAVES8.to_vec()).unwrap();
// update one leaf
let index = 3;
let new_node = int_to_node(9);
let mut expected_leaves = LEAVES8.to_vec();
expected_leaves[index as usize] = new_node;
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
tree.update_leaf(index, new_node).unwrap();
assert_eq!(expected_tree.nodes, tree.nodes);
// update another leaf
let index = 6;
let new_node = int_to_node(10);
expected_leaves[index as usize] = new_node;
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
tree.update_leaf(index, new_node).unwrap();
assert_eq!(expected_tree.nodes, tree.nodes);
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn compute_internal_nodes() -> (Word, Word, Word) {
let node2 = Rp64_256::hash_elements(&[LEAVES4[0], LEAVES4[1]].concat());
let node3 = Rp64_256::hash_elements(&[LEAVES4[2], LEAVES4[3]].concat());
let root = Rp64_256::merge(&[node2, node3]);
(root.into(), node2.into(), node3.into())
}
const fn int_to_node(value: u64) -> Word {
[Felt::new(value), Felt::ZERO, Felt::ZERO, Felt::ZERO]
}
}

+ 42
- 0
crypto/src/merkle/mod.rs

@ -0,0 +1,42 @@
pub mod merkle_path_set;
pub mod merkle_tree;
use winterfell::crypto::Hasher as HashFn;
pub use winterfell::crypto::hashers::Rp64_256 as Hasher;
pub use winterfell::math::{
fields::{f64::BaseElement as Felt, QuadExtension},
ExtensionOf, FieldElement, StarkField,
};
// TYPE ALIASES
// ================================================================================================
pub type Word = [Felt; 4];
pub type Digest = <Hasher as HashFn>::Digest;
// PASS-THROUGH FUNCTIONS
// ================================================================================================
/// Returns a hash of two digests. This method is intended for use in construction of Merkle trees.
#[inline(always)]
pub fn merge(values: &[Digest; 2]) -> Digest {
Hasher::merge(values)
}
// ERRORS
// ================================================================================================
#[derive(Clone, Debug)]
pub enum MerkleError {
DepthTooSmall,
DepthTooBig(u32),
NumLeavesNotPowerOfTwo(usize),
InvalidIndex(u32, u64),
InvalidDepth(u32, u32),
InvalidPath(Vec<Word>),
NodeNotInSet(u64),
}
// UTILITY FUNCTIONS
// ================================================================================================

Loading…
Cancel
Save