Browse Source

Merge pull request #80 from 0xPolygonMiden/next

v0.2 tracking PR
al-gkr-basic-workflow v0.2.0
Bobbin Threadbare 2 years ago
committed by GitHub
parent
commit
9389f2fb40
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
33 changed files with 4696 additions and 140 deletions
  1. +2
    -0
      .git-blame-ignore-revs
  2. +1
    -1
      .github/pull_request_template.md
  3. +43
    -0
      .pre-commit-config.yaml
  4. +9
    -0
      CHANGELOG.md
  5. +1
    -1
      CONTRIBUTING.md
  6. +10
    -6
      Cargo.toml
  7. +1
    -1
      LICENSE
  8. +2
    -0
      README.md
  9. +3
    -3
      benches/README.md
  10. +1
    -1
      benches/smt.rs
  11. +506
    -0
      benches/store.rs
  12. +169
    -0
      src/bit.rs
  13. +1
    -1
      src/hash/blake/mod.rs
  14. +13
    -1
      src/hash/rpo/digest.rs
  15. +1
    -1
      src/hash/rpo/mod.rs
  16. +2
    -6
      src/lib.rs
  17. +1585
    -0
      src/merkle/empty_roots.rs
  18. +18
    -1
      src/merkle/index.rs
  19. +57
    -3
      src/merkle/merkle_tree.rs
  20. +44
    -0
      src/merkle/mmr/accumulator.rs
  21. +46
    -0
      src/merkle/mmr/bit.rs
  22. +299
    -0
      src/merkle/mmr/full.rs
  23. +15
    -0
      src/merkle/mmr/mod.rs
  24. +33
    -0
      src/merkle/mmr/proof.rs
  25. +440
    -0
      src/merkle/mmr/tests.rs
  26. +23
    -5
      src/merkle/mod.rs
  27. +24
    -0
      src/merkle/path.rs
  28. +105
    -23
      src/merkle/path_set.rs
  29. +75
    -62
      src/merkle/simple_smt/mod.rs
  30. +31
    -24
      src/merkle/simple_smt/tests.rs
  31. +478
    -0
      src/merkle/store/mod.rs
  32. +637
    -0
      src/merkle/store/tests.rs
  33. +21
    -0
      src/utils.rs

+ 2
- 0
.git-blame-ignore-revs

@ -0,0 +1,2 @@
# initial run of pre-commit
956e4c6fad779ef15eaa27702b26f05f65d31494

+ 1
- 1
.github/pull_request_template.md

@ -6,4 +6,4 @@
- Commit messages and codestyle follow [conventions](./CONTRIBUTING.md).
- Relevant issues are linked in the PR description.
- Tests added for new functionality.
- Documentation/comments updated according to changes.
- Documentation/comments updated according to changes.

+ 43
- 0
.pre-commit-config.yaml

@ -0,0 +1,43 @@
# See https://pre-commit.com for more information
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-json
- id: check-toml
- id: pretty-format-json
- id: check-added-large-files
- id: check-case-conflict
- id: check-executables-have-shebangs
- id: check-merge-conflict
- id: detect-private-key
- repo: https://github.com/hackaugusto/pre-commit-cargo
rev: v1.0.0
hooks:
# Allows cargo fmt to modify the source code prior to the commit
- id: cargo
name: Cargo fmt
args: ["+stable", "fmt", "--all"]
stages: [commit]
# Requires code to be properly formatted prior to pushing upstream
- id: cargo
name: Cargo fmt --check
args: ["+stable", "fmt", "--all", "--check"]
stages: [push, manual]
- id: cargo
name: Cargo check --all-targets
args: ["+stable", "check", "--all-targets"]
- id: cargo
name: Cargo check --all-targets --no-default-features
args: ["+stable", "check", "--all-targets", "--no-default-features"]
- id: cargo
name: Cargo check --all-targets --all-features
args: ["+stable", "check", "--all-targets", "--all-features"]
# Unlike fmt, clippy will not be automatically applied
- id: cargo
name: Cargo clippy
args: ["+nightly", "clippy", "--workspace", "--", "--deny", "clippy::all", "--deny", "warnings"]

+ 9
- 0
CHANGELOG.md

@ -1,3 +1,12 @@
## 0.2.0 (2023-03-24)
- Implemented `Mmr` and related structs (#67).
- Implemented `MerkleStore` (#93, #94, #95, #107 #112).
- Added benchmarks for `MerkleStore` vs. other structs (#97).
- Added Merkle path containers (#99).
- Fixed depth handling in `MerklePathSet` (#110).
- Updated Winterfell dependency to v0.6.
## 0.1.4 (2023-02-22)
- Re-export winter-crypto Hasher, Digest & ElementHasher (#72)

+ 1
- 1
CONTRIBUTING.md

@ -17,7 +17,7 @@ We are using [Github Flow](https://docs.github.com/en/get-started/quickstart/git
### Branching
- The current active branch is `next`. Every branch with a fix/feature must be forked from `next`.
- The branch name should contain a short issue/feature description separated with hyphens [(kebab-case)](https://en.wikipedia.org/wiki/Letter_case#Kebab_case).
- The branch name should contain a short issue/feature description separated with hyphens [(kebab-case)](https://en.wikipedia.org/wiki/Letter_case#Kebab_case).
For example, if the issue title is `Fix functionality X in component Y` then the branch name will be something like: `fix-x-in-y`.

+ 10
- 6
Cargo.toml

@ -1,12 +1,12 @@
[package]
name = "miden-crypto"
version = "0.1.4"
version = "0.2.0"
description = "Miden Cryptographic primitives"
authors = ["miden contributors"]
readme = "README.md"
license = "MIT"
repository = "https://github.com/0xPolygonMiden/crypto"
documentation = "https://docs.rs/miden-crypto/0.1.4"
documentation = "https://docs.rs/miden-crypto/0.2.0"
categories = ["cryptography", "no-std"]
keywords = ["miden", "crypto", "hash", "merkle"]
edition = "2021"
@ -20,17 +20,21 @@ harness = false
name = "smt"
harness = false
[[bench]]
name = "store"
harness = false
[features]
default = ["blake3/default", "std", "winter_crypto/default", "winter_math/default", "winter_utils/default"]
std = ["blake3/std", "winter_crypto/std", "winter_math/std", "winter_utils/std"]
[dependencies]
blake3 = { version = "1.3", default-features = false }
winter_crypto = { version = "0.5", package = "winter-crypto", default-features = false }
winter_math = { version = "0.5", package = "winter-math", default-features = false }
winter_utils = { version = "0.5", package = "winter-utils", default-features = false }
winter_crypto = { version = "0.6", package = "winter-crypto", default-features = false }
winter_math = { version = "0.6", package = "winter-math", default-features = false }
winter_utils = { version = "0.6", package = "winter-utils", default-features = false }
[dev-dependencies]
criterion = { version = "0.4", features = ["html_reports"] }
proptest = "1.1.0"
rand_utils = { version = "0.5", package = "winter-rand-utils" }
rand_utils = { version = "0.6", package = "winter-rand-utils" }

+ 1
- 1
LICENSE

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2022 Polygon Miden
Copyright (c) 2023 Polygon Miden
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

+ 2
- 0
README.md

@ -15,6 +15,8 @@ For performance benchmarks of these hash functions and their comparison to other
* `MerkleTree`: a regular fully-balanced binary Merkle tree. The depth of this tree can be at most 64.
* `SimpleSmt`: a Sparse Merkle Tree, mapping 63-bit keys to 4-element leaf values.
* `MerklePathSet`: a collection of Merkle authentication paths all resolving to the same root. The length of the paths can be at most 64.
* `MerkleStore`: a collection of Merkle trees of different heights designed to efficiently store trees with common subtrees.
* `Mmr`: a Merkle mountain range structure designed to function as an append-only log.
The module also contains additional supporting components such as `NodeIndex`, `MerklePath`, and `MerkleError` to assist with tree indexation, opening proofs, and reporting inconsistent arguments/state.

+ 3
- 3
benches/README.md

@ -1,4 +1,4 @@
# Miden VM Hash Functions
# Miden VM Hash Functions
In the Miden VM, we make use of different hash functions. Some of these are "traditional" hash functions, like `BLAKE3`, which are optimized for out-of-STARK performance, while others are algebraic hash functions, like `Rescue Prime`, and are more optimized for a better performance inside the STARK. In what follows, we benchmark several such hash functions and compare against other constructions that are used by other proving systems. More precisely, we benchmark:
* **BLAKE3** as specified [here](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf) and implemented [here](https://github.com/BLAKE3-team/BLAKE3) (with a wrapper exposed via this crate).
@ -13,7 +13,7 @@ In the Miden VM, we make use of different hash functions. Some of these are "tra
We benchmark the above hash functions using two scenarios. The first is a 2-to-1 $(a,b)\mapsto h(a,b)$ hashing where both $a$, $b$ and $h(a,b)$ are the digests corresponding to each of the hash functions.
The second scenario is that of sequential hashing where we take a sequence of length $100$ field elements and hash these to produce a single digest. The digests are $4$ field elements in a prime field with modulus $2^{64} - 2^{32} + 1$ (i.e., 32 bytes) for Poseidon, Rescue Prime and RPO, and an array `[u8; 32]` for SHA3 and BLAKE3.
#### Scenario 1: 2-to-1 hashing `h(a,b)`
#### Scenario 1: 2-to-1 hashing `h(a,b)`
| Function | BLAKE3 | SHA3 | Poseidon | Rp64_256 | RPO_256 |
| ------------------- | ------ | --------| --------- | --------- | ------- |
@ -46,4 +46,4 @@ To run the benchmarks for Rescue Prime, Poseidon and SHA3, clone the following [
```
cargo bench hash
```
```

+ 1
- 1
benches/smt.rs

@ -18,7 +18,7 @@ fn smt_rpo(c: &mut Criterion) {
(i, word)
})
.collect();
let tree = SimpleSmt::new(entries, depth).unwrap();
let tree = SimpleSmt::new(depth).unwrap().with_leaves(entries).unwrap();
trees.push(tree);
}
}

+ 506
- 0
benches/store.rs

@ -0,0 +1,506 @@
use criterion::{black_box, criterion_group, criterion_main, BatchSize, BenchmarkId, Criterion};
use miden_crypto::merkle::{MerkleStore, MerkleTree, NodeIndex, SimpleSmt};
use miden_crypto::Word;
use miden_crypto::{hash::rpo::RpoDigest, Felt};
use rand_utils::{rand_array, rand_value};
/// Since MerkleTree can only be created when a power-of-two number of elements is used, the sample
/// sizes are limited to that.
static BATCH_SIZES: [usize; 3] = [2usize.pow(4), 2usize.pow(7), 2usize.pow(10)];
/// Generates a random `RpoDigest`.
fn random_rpo_digest() -> RpoDigest {
rand_array::<Felt, 4>().into()
}
/// Generates a random `Word`.
fn random_word() -> Word {
rand_array::<Felt, 4>().into()
}
/// Generates a u64 in `0..range`.
fn random_index(range: u64) -> u64 {
rand_value::<u64>() % range
}
/// Benchmarks getting an empty leaf from the SMT and MerkleStore backends.
fn get_empty_leaf_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("get_empty_leaf_simplesmt");
let depth = 63u8;
let size = 2u64.pow(depth as u32);
// both SMT and the store are pre-populated with empty hashes, accessing these values is what is
// being benchmarked here, so no values are inserted into the backends
let smt = SimpleSmt::new(depth).unwrap();
let store = MerkleStore::new();
let root = smt.root();
group.bench_function(BenchmarkId::new("SimpleSmt", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(smt.get_node(&NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
}
/// Benchmarks getting a leaf on Merkle trees and Merkle stores of varying power-of-two sizes.
fn get_leaf_merkletree(c: &mut Criterion) {
let mut group = c.benchmark_group("get_leaf_merkletree");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let depth = mtree.depth();
let root = mtree.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(mtree.get_node(NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
}
}
/// Benchmarks getting a leaf on SMT and Merkle stores of varying power-of-two sizes.
fn get_leaf_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("get_leaf_simplesmt");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let smt_leaves = leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let depth = smt.depth();
let root = smt.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(smt.get_node(&NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
}
}
/// Benchmarks getting a node at half of the depth of an empty SMT and an empty Merkle store.
fn get_node_of_empty_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("get_node_of_empty_simplesmt");
let depth = 63u8;
let size = 2u64.pow(depth as u32);
// both SMT and the store are pre-populated with the empty hashes, accessing the internal nodes
// of these values is what is being benchmarked here, so no values are inserted into the
// backends.
let smt = SimpleSmt::new(depth).unwrap();
let store = MerkleStore::new();
let root = smt.root();
let half_depth = depth / 2;
group.bench_function(BenchmarkId::new("SimpleSmt", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(smt.get_node(&NodeIndex::new(half_depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
BatchSize::SmallInput,
)
});
}
/// Benchmarks getting a node at half of the depth of a Merkle tree and Merkle store of varying
/// power-of-two sizes.
fn get_node_merkletree(c: &mut Criterion) {
let mut group = c.benchmark_group("get_node_merkletree");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let half_depth = mtree.depth() / 2;
let root = mtree.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(mtree.get_node(NodeIndex::new(half_depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
BatchSize::SmallInput,
)
});
}
}
/// Benchmarks getting a node at half the depth on SMT and Merkle stores of varying power-of-two
/// sizes.
fn get_node_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("get_node_simplesmt");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let smt_leaves = leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let root = smt.root();
let size_u64 = size as u64;
let half_depth = smt.depth() / 2;
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(smt.get_node(&NodeIndex::new(half_depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
BatchSize::SmallInput,
)
});
}
}
/// Benchmarks getting a path of a leaf on the Merkle tree and Merkle store backends.
fn get_leaf_path_merkletree(c: &mut Criterion) {
let mut group = c.benchmark_group("get_leaf_path_merkletree");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let depth = mtree.depth();
let root = mtree.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(mtree.get_path(NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_path(root, NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
}
}
/// Benchmarks getting a path of a leaf on the SMT and Merkle store backends.
fn get_leaf_path_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("get_leaf_path_simplesmt");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let smt_leaves = leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let depth = smt.depth();
let root = smt.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(smt.get_path(NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_path(root, NodeIndex::new(depth, value))),
BatchSize::SmallInput,
)
});
}
}
/// Benchmarks creation of the different storage backends
fn new(c: &mut Criterion) {
let mut group = c.benchmark_group("new");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
// MerkleTree constructor is optimized to work with vectors. Create a new copy of the data
// and pass it to the benchmark function
group.bench_function(BenchmarkId::new("MerkleTree::new", size), |b| {
b.iter_batched(
|| leaves.iter().map(|v| v.into()).collect::<Vec<Word>>(),
|l| black_box(MerkleTree::new(l)),
BatchSize::SmallInput,
)
});
// This could be done with `bench_with_input`, however to remove variables while comparing
// with MerkleTree it is using `iter_batched`
group.bench_function(
BenchmarkId::new("MerkleStore::with_merkle_tree", size),
|b| {
b.iter_batched(
|| leaves.iter().map(|v| v.into()).collect::<Vec<Word>>(),
|l| black_box(MerkleStore::new().with_merkle_tree(l)),
BatchSize::SmallInput,
)
},
);
group.bench_function(BenchmarkId::new("SimpleSmt::new", size), |b| {
b.iter_batched(
|| {
leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>()
},
|l| black_box(SimpleSmt::new(63).unwrap().with_leaves(l)),
BatchSize::SmallInput,
)
});
group.bench_function(
BenchmarkId::new("MerkleStore::with_sparse_merkle_tree", size),
|b| {
b.iter_batched(
|| {
leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>()
},
|l| black_box(MerkleStore::new().with_sparse_merkle_tree(l)),
BatchSize::SmallInput,
)
},
);
}
}
/// Benchmarks updating a leaf on MerkleTree and MerkleStore backends.
fn update_leaf_merkletree(c: &mut Criterion) {
let mut group = c.benchmark_group("update_leaf_merkletree");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mut mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let mut store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let depth = mtree.depth();
let root = mtree.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|(index, value)| black_box(mtree.update_leaf(index, value)),
BatchSize::SmallInput,
)
});
let mut store_root = root;
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|(index, value)| {
// The MerkleTree automatically updates its internal root, the Store maintains
// the old root and adds the new one. Here we update the root to have a fair
// comparison
store_root = store
.set_node(root, NodeIndex::new(depth, index), value)
.unwrap()
.root;
black_box(store_root)
},
BatchSize::SmallInput,
)
});
}
}
/// Benchmarks updating a leaf on SMT and MerkleStore backends.
fn update_leaf_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("update_leaf_simplesmt");
let random_data_size = BATCH_SIZES.into_iter().max().unwrap();
let random_data: Vec<RpoDigest> = (0..random_data_size).map(|_| random_rpo_digest()).collect();
for size in BATCH_SIZES {
let leaves = &random_data[..size];
let smt_leaves = leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let mut smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let mut store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let depth = smt.depth();
let root = smt.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("SimpleSMT", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|(index, value)| black_box(smt.update_leaf(index, value)),
BatchSize::SmallInput,
)
});
let mut store_root = root;
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|(index, value)| {
// The MerkleTree automatically updates its internal root, the Store maintains
// the old root and adds the new one. Here we update the root to have a fair
// comparison
store_root = store
.set_node(root, NodeIndex::new(depth, index), value)
.unwrap()
.root;
black_box(store_root)
},
BatchSize::SmallInput,
)
});
}
}
criterion_group!(
store_group,
get_empty_leaf_simplesmt,
get_leaf_merkletree,
get_leaf_path_merkletree,
get_leaf_path_simplesmt,
get_leaf_simplesmt,
get_node_merkletree,
get_node_of_empty_simplesmt,
get_node_simplesmt,
new,
update_leaf_merkletree,
update_leaf_simplesmt,
);
criterion_main!(store_group);

+ 169
- 0
src/bit.rs

@ -0,0 +1,169 @@
/// Yields the bits of a `u64`.
pub struct BitIterator {
/// The value that is being iterated bit-wise
value: u64,
/// True bits in the `mask` are the bits that have been visited.
mask: u64,
}
impl BitIterator {
pub fn new(value: u64) -> BitIterator {
BitIterator { value, mask: 0 }
}
/// An efficient skip implementation.
///
/// Note: The compiler is smart enough to translate a `skip(n)` into a single shift instruction
/// if the code is inlined, however inlining does not always happen.
pub fn skip_front(mut self, n: u32) -> Self {
let mask = bitmask(n);
let ones = self.mask.trailing_ones();
let mask_position = ones;
self.mask ^= mask.checked_shl(mask_position).unwrap_or(0);
self
}
/// An efficient skip from the back.
///
/// Note: The compiler is smart enough to translate a `skip(n)` into a single shift instruction
/// if the code is inlined, however inlining does not always happen.
pub fn skip_back(mut self, n: u32) -> Self {
let mask = bitmask(n);
let ones = self.mask.leading_ones();
let mask_position = u64::BITS - ones - n;
self.mask ^= mask.checked_shl(mask_position).unwrap_or(0);
self
}
}
impl Iterator for BitIterator {
type Item = bool;
fn next(&mut self) -> Option<<Self as Iterator>::Item> {
// trailing_ones is implemented with trailing_zeros, and the zeros are computed with the
// intrinsic cttz. [Rust 1.67.0] x86 uses the `bsf` instruction. AArch64 uses the `rbit
// clz` instructions.
let ones = self.mask.trailing_ones();
if ones == u64::BITS {
None
} else {
let bit_position = ones;
let mask = 1 << bit_position;
self.mask ^= mask;
let bit = self.value & mask;
Some(bit != 0)
}
}
}
impl DoubleEndedIterator for BitIterator {
fn next_back(&mut self) -> Option<<Self as Iterator>::Item> {
// leading_ones is implemented with leading_zeros, and the zeros are computed with the
// intrinsic ctlz. [Rust 1.67.0] x86 uses the `bsr` instruction. AArch64 uses the `clz`
// instruction.
let ones = self.mask.leading_ones();
if ones == u64::BITS {
None
} else {
let bit_position = u64::BITS - ones - 1;
let mask = 1 << bit_position;
self.mask ^= mask;
let bit = self.value & mask;
Some(bit != 0)
}
}
}
#[cfg(test)]
mod test {
use super::BitIterator;
#[test]
fn test_bit_iterator() {
let v = 0b1;
let mut it = BitIterator::new(v);
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v);
assert!(!it.next().unwrap(), "first bit is false");
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v);
assert!(!it.next_back().unwrap(), "last bit is false");
assert!(!it.next().unwrap(), "first bit is false");
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
}
#[test]
fn test_bit_iterator_skip() {
let v = 0b1;
let mut it = BitIterator::new(v).skip_front(1);
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v).skip_front(1);
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
let high_bit = 0b1 << (u64::BITS - 1);
let mut it = BitIterator::new(high_bit).skip_back(1);
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v).skip_back(1);
assert!(!it.next_back().unwrap(), "last bit is false");
assert!(!it.next().unwrap(), "first bit is false");
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
}
#[test]
fn test_skip_all() {
let v = 0b1;
let mut it = BitIterator::new(v).skip_front(u64::BITS);
assert!(it.next().is_none(), "iterator must be exhausted");
let v = 0b1;
let mut it = BitIterator::new(v).skip_back(u64::BITS);
assert!(it.next().is_none(), "iterator must be exhausted");
}
#[test]
fn test_bit_iterator_count_bits_after_skip() {
let any_value = 0b1;
for s in 0..u64::BITS {
let it = BitIterator::new(any_value).skip_front(s);
assert_eq!(it.count() as u32, u64::BITS - s)
}
let any_value = 0b1;
for s in 1..u64::BITS {
let it = BitIterator::new(any_value).skip_back(s);
assert_eq!(it.count() as u32, u64::BITS - s)
}
}
#[test]
fn test_bit_iterator_rev() {
let v = 0b1;
let mut it = BitIterator::new(v).rev();
assert!(it.nth(63).unwrap(), "the last value is true");
}
}
// UTILITIES
// ===============================================================================================
fn bitmask(s: u32) -> u64 {
match 1u64.checked_shl(s) {
Some(r) => r - 1,
None => u64::MAX,
}
}

+ 1
- 1
src/hash/blake/mod.rs

@ -290,7 +290,7 @@ where
let digest = if Felt::IS_CANONICAL {
blake3::hash(E::elements_as_bytes(elements))
} else {
let base_elements = E::as_base_elements(elements);
let base_elements = E::slice_as_base_elements(elements);
let blen = base_elements.len() << 3;
let mut bytes = unsafe { uninit_vector(blen) };

+ 13
- 1
src/hash/rpo/digest.rs

@ -11,7 +11,7 @@ use core::{cmp::Ordering, ops::Deref};
pub struct RpoDigest([Felt; DIGEST_SIZE]);
impl RpoDigest {
pub fn new(value: [Felt; DIGEST_SIZE]) -> Self {
pub const fn new(value: [Felt; DIGEST_SIZE]) -> Self {
Self(value)
}
@ -73,12 +73,24 @@ impl From<[Felt; DIGEST_SIZE]> for RpoDigest {
}
}
impl From<&RpoDigest> for [Felt; DIGEST_SIZE] {
fn from(value: &RpoDigest) -> Self {
value.0
}
}
impl From<RpoDigest> for [Felt; DIGEST_SIZE] {
fn from(value: RpoDigest) -> Self {
value.0
}
}
impl From<&RpoDigest> for [u8; 32] {
fn from(value: &RpoDigest) -> Self {
value.as_bytes()
}
}
impl From<RpoDigest> for [u8; 32] {
fn from(value: RpoDigest) -> Self {
value.as_bytes()

+ 1
- 1
src/hash/rpo/mod.rs

@ -212,7 +212,7 @@ impl ElementHasher for Rpo256 {
fn hash_elements<E: FieldElement<BaseField = Self::BaseField>>(elements: &[E]) -> Self::Digest {
// convert the elements into a list of base field elements
let elements = E::as_base_elements(elements);
let elements = E::slice_as_base_elements(elements);
// initialize state to all zeros, except for the first element of the capacity part, which
// is set to 1 if the number of elements is not a multiple of RATE_WIDTH.

+ 2
- 6
src/lib.rs

@ -4,20 +4,16 @@
#[cfg_attr(test, macro_use)]
extern crate alloc;
mod bit;
pub mod hash;
pub mod merkle;
pub mod utils;
// RE-EXPORTS
// ================================================================================================
pub use winter_crypto::{RandomCoin, RandomCoinError};
pub use winter_math::{fields::f64::BaseElement as Felt, FieldElement, StarkField};
pub mod utils {
pub use winter_utils::{
collections, string, uninit_vector, ByteReader, ByteWriter, Deserializable,
DeserializationError, Serializable, SliceReader,
};
}
// TYPE ALIASES
// ================================================================================================

+ 1585
- 0
src/merkle/empty_roots.rs
File diff suppressed because it is too large
View File


+ 18
- 1
src/merkle/index.rs

@ -1,9 +1,13 @@
use super::{Felt, MerkleError, RpoDigest, StarkField};
use crate::bit::BitIterator;
// NODE INDEX
// ================================================================================================
/// A Merkle tree address to an arbitrary node.
///
/// The position is relative to a tree in level order, where for a given depth `d` elements are
/// numbered from $0..2^d$.
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
pub struct NodeIndex {
depth: u8,
@ -74,7 +78,7 @@ impl NodeIndex {
self.depth
}
/// Returns the value of the current depth.
/// Returns the value of this index.
pub const fn value(&self) -> u64 {
self.value
}
@ -94,6 +98,19 @@ impl NodeIndex {
self.depth == 0
}
/// Returns a bit iterator for the `value`.
///
/// Bits read from left-to-right represent which internal node's child should be visited to
/// arrive at the leaf. From the right-to-left the bit represent the position the hash of the
/// current element should go.
///
/// Additionally, the value that is not visited are the sibling values necessary for a Merkle
/// opening.
pub fn bit_iterator(&self) -> BitIterator {
let depth: u32 = self.depth.into();
BitIterator::new(self.value).skip_back(u64::BITS - depth)
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------

+ 57
- 3
src/merkle/merkle_tree.rs

@ -1,6 +1,9 @@
use super::{Felt, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word};
use crate::{utils::uninit_vector, FieldElement};
use core::slice;
use crate::{
utils::{string::String, uninit_vector, word_to_hex},
FieldElement,
};
use core::{fmt, slice};
use winter_math::log2;
// MERKLE TREE
@ -9,7 +12,7 @@ use winter_math::log2;
/// A fully-balanced binary Merkle tree (i.e., a tree where the number of leaves is a power of two).
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MerkleTree {
nodes: Vec<Word>,
pub(crate) nodes: Vec<Word>,
}
impl MerkleTree {
@ -108,6 +111,11 @@ impl MerkleTree {
index.move_up();
}
debug_assert!(
index.is_root(),
"the path walk must go all the way to the root"
);
Ok(path.into())
}
@ -152,6 +160,52 @@ impl MerkleTree {
}
}
/// Utility to vizualize a [MerkleTree] in text.
pub fn tree_to_text(tree: &MerkleTree) -> Result<String, fmt::Error> {
let indent = " ";
let mut s = String::new();
s.push_str(&word_to_hex(&tree.root())?);
s.push('\n');
for d in 1..=tree.depth() {
let entries = 2u64.pow(d.into());
for i in 0..entries {
let index = NodeIndex::new(d, i);
let node = tree
.get_node(index)
.expect("The index must always be valid");
for _ in 0..d {
s.push_str(indent);
}
s.push_str(&word_to_hex(&node)?);
s.push('\n');
}
}
Ok(s)
}
/// Utility to vizualize a [MerklePath] in text.
pub fn path_to_text(path: &MerklePath) -> Result<String, fmt::Error> {
let mut s = String::new();
s.push('[');
for el in path.iter() {
s.push_str(&word_to_hex(el)?);
s.push_str(", ");
}
// remove the last ", "
if path.len() != 0 {
s.pop();
s.pop();
}
s.push(']');
Ok(s)
}
// TESTS
// ================================================================================================

+ 44
- 0
src/merkle/mmr/accumulator.rs

@ -0,0 +1,44 @@
use super::{super::Vec, MmrProof, Rpo256, Word};
#[derive(Debug, Clone, PartialEq)]
pub struct MmrPeaks {
/// The number of leaves is used to differentiate accumulators that have the same number of
/// peaks. This happens because the number of peaks goes up-and-down as the structure is used
/// causing existing trees to be merged and new ones to be created. As an example, every time
/// the MMR has a power-of-two number of leaves there is a single peak.
///
/// Every tree in the MMR forest has a distinct power-of-two size, this means only the right
/// most tree can have an odd number of elements (1). Additionally this means that the bits in
/// `num_leaves` conveniently encode the size of each individual tree.
///
/// Examples:
///
/// Example 1: With 5 leaves, the binary 0b101. The number of set bits is equal the number
/// of peaks, in this case there are 2 peaks. The 0-indexed least-significant position of
/// the bit determines the number of elements of a tree, so the rightmost tree has 2**0
/// elements and the left most has 2**2.
///
/// Example 2: With 12 leaves, the binary is 0b1100, this case also has 2 peaks, the
/// leftmost tree has 2**3=8 elements, and the right most has 2**2=4 elements.
pub num_leaves: usize,
/// All the peaks of every tree in the MMR forest. The peaks are always ordered by number of
/// leaves, starting from the peak with most children, to the one with least.
///
/// Invariant: The length of `peaks` must be equal to the number of true bits in `num_leaves`.
pub peaks: Vec<Word>,
}
impl MmrPeaks {
/// Hashes the peaks sequentially, compacting it to a single digest
pub fn hash_peaks(&self) -> Word {
Rpo256::hash_elements(&self.peaks.as_slice().concat()).into()
}
pub fn verify(&self, value: Word, opening: MmrProof) -> bool {
let root = &self.peaks[opening.peak_index()];
opening
.merkle_path
.verify(opening.relative_pos() as u64, value, root)
}
}

+ 46
- 0
src/merkle/mmr/bit.rs

@ -0,0 +1,46 @@
/// Iterate over the bits of a `usize` and yields the bit positions for the true bits.
pub struct TrueBitPositionIterator {
value: usize,
}
impl TrueBitPositionIterator {
pub fn new(value: usize) -> TrueBitPositionIterator {
TrueBitPositionIterator { value }
}
}
impl Iterator for TrueBitPositionIterator {
type Item = u32;
fn next(&mut self) -> Option<<Self as Iterator>::Item> {
// trailing_zeros is computed with the intrinsic cttz. [Rust 1.67.0] x86 uses the `bsf`
// instruction. AArch64 uses the `rbit clz` instructions.
let zeros = self.value.trailing_zeros();
if zeros == usize::BITS {
None
} else {
let bit_position = zeros;
let mask = 1 << bit_position;
self.value ^= mask;
Some(bit_position)
}
}
}
impl DoubleEndedIterator for TrueBitPositionIterator {
fn next_back(&mut self) -> Option<<Self as Iterator>::Item> {
// trailing_zeros is computed with the intrinsic ctlz. [Rust 1.67.0] x86 uses the `bsr`
// instruction. AArch64 uses the `clz` instruction.
let zeros = self.value.leading_zeros();
if zeros == usize::BITS {
None
} else {
let bit_position = usize::BITS - zeros - 1;
let mask = 1 << bit_position;
self.value ^= mask;
Some(bit_position)
}
}
}

+ 299
- 0
src/merkle/mmr/full.rs

@ -0,0 +1,299 @@
//! A fully materialized Merkle mountain range (MMR).
//!
//! A MMR is a forest structure, i.e. it is an ordered set of disjoint rooted trees. The trees are
//! ordered by size, from the most to least number of leaves. Every tree is a perfect binary tree,
//! meaning a tree has all its leaves at the same depth, and every inner node has a branch-factor
//! of 2 with both children set.
//!
//! Additionally the structure only supports adding leaves to the right-most tree, the one with the
//! least number of leaves. The structure preserves the invariant that each tree has different
//! depths, i.e. as part of adding adding a new element to the forest the trees with same depth are
//! merged, creating a new tree with depth d+1, this process is continued until the property is
//! restabilished.
use super::bit::TrueBitPositionIterator;
use super::{super::Vec, MmrPeaks, MmrProof, Rpo256, Word};
use crate::merkle::MerklePath;
use core::fmt::{Display, Formatter};
#[cfg(feature = "std")]
use std::error::Error;
// MMR
// ===============================================================================================
/// A fully materialized Merkle Mountain Range, with every tree in the forest and all their
/// elements.
///
/// Since this is a full representation of the MMR, elements are never removed and the MMR will
/// grow roughly `O(2n)` in number of leaf elements.
pub struct Mmr {
/// Refer to the `forest` method documentation for details of the semantics of this value.
pub(super) forest: usize,
/// Contains every element of the forest.
///
/// The trees are in postorder sequential representation. This representation allows for all
/// the elements of every tree in the forest to be stored in the same sequential buffer. It
/// also means new elements can be added to the forest, and merging of trees is very cheap with
/// no need to copy elements.
pub(super) nodes: Vec<Word>,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum MmrError {
InvalidPosition(usize),
}
impl Display for MmrError {
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), core::fmt::Error> {
match self {
MmrError::InvalidPosition(pos) => write!(fmt, "Mmr does not contain position {pos}"),
}
}
}
#[cfg(feature = "std")]
impl Error for MmrError {}
impl Default for Mmr {
fn default() -> Self {
Self::new()
}
}
impl Mmr {
// CONSTRUCTORS
// ============================================================================================
/// Constructor for an empty `Mmr`.
pub fn new() -> Mmr {
Mmr {
forest: 0,
nodes: Vec::new(),
}
}
// ACCESSORS
// ============================================================================================
/// Returns the MMR forest representation.
///
/// The forest value has the following interpretations:
/// - its value is the number of elements in the forest
/// - bit count corresponds to the number of trees in the forest
/// - each true bit position determines the depth of a tree in the forest
pub const fn forest(&self) -> usize {
self.forest
}
// FUNCTIONALITY
// ============================================================================================
/// Given a leaf position, returns the Merkle path to its corresponding peak. If the position
/// is greater-or-equal than the tree size an error is returned.
///
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
/// has position 0, the second position 1, and so on.
pub fn open(&self, pos: usize) -> Result<MmrProof, MmrError> {
// find the target tree responsible for the MMR position
let tree_bit =
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
let forest_target = 1usize << tree_bit;
// isolate the trees before the target
let forest_before = self.forest & high_bitmask(tree_bit + 1);
let index_offset = nodes_in_forest(forest_before);
// find the root
let index = nodes_in_forest(forest_target) - 1;
// update the value position from global to the target tree
let relative_pos = pos - forest_before;
// collect the path and the final index of the target value
let (_, path) =
self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset, index);
Ok(MmrProof {
forest: self.forest,
position: pos,
merkle_path: MerklePath::new(path),
})
}
/// Returns the leaf value at position `pos`.
///
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
/// has position 0, the second position 1, and so on.
pub fn get(&self, pos: usize) -> Result<Word, MmrError> {
// find the target tree responsible for the MMR position
let tree_bit =
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
let forest_target = 1usize << tree_bit;
// isolate the trees before the target
let forest_before = self.forest & high_bitmask(tree_bit + 1);
let index_offset = nodes_in_forest(forest_before);
// find the root
let index = nodes_in_forest(forest_target) - 1;
// update the value position from global to the target tree
let relative_pos = pos - forest_before;
// collect the path and the final index of the target value
let (value, _) =
self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset, index);
Ok(value)
}
/// Adds a new element to the MMR.
pub fn add(&mut self, el: Word) {
// Note: every node is also a tree of size 1, adding an element to the forest creates a new
// rooted-tree of size 1. This may temporarily break the invariant that every tree in the
// forest has different sizes, the loop below will eagerly merge trees of same size and
// restore the invariant.
self.nodes.push(el);
let mut left_offset = self.nodes.len().saturating_sub(2);
let mut right = el;
let mut left_tree = 1;
while self.forest & left_tree != 0 {
right = *Rpo256::merge(&[self.nodes[left_offset].into(), right.into()]);
self.nodes.push(right);
left_offset = left_offset.saturating_sub(nodes_in_forest(left_tree));
left_tree <<= 1;
}
self.forest += 1;
}
/// Returns an accumulator representing the current state of the MMMR.
pub fn accumulator(&self) -> MmrPeaks {
let peaks: Vec<Word> = TrueBitPositionIterator::new(self.forest)
.rev()
.map(|bit| nodes_in_forest(1 << bit))
.scan(0, |offset, el| {
*offset += el;
Some(*offset)
})
.map(|offset| self.nodes[offset - 1])
.collect();
MmrPeaks {
num_leaves: self.forest,
peaks,
}
}
// UTILITIES
// ============================================================================================
/// Internal function used to collect the Merkle path of a value.
fn collect_merkle_path_and_value(
&self,
tree_bit: u32,
relative_pos: usize,
index_offset: usize,
mut index: usize,
) -> (Word, Vec<Word>) {
// collect the Merkle path
let mut tree_depth = tree_bit as usize;
let mut path = Vec::with_capacity(tree_depth + 1);
while tree_depth > 0 {
let bit = relative_pos & tree_depth;
let right_offset = index - 1;
let left_offset = right_offset - nodes_in_forest(tree_depth);
// Elements to the right have a higher position because they were
// added later. Therefore when the bit is true the node's path is
// to the right, and its sibling to the left.
let sibling = if bit != 0 {
index = right_offset;
self.nodes[index_offset + left_offset]
} else {
index = left_offset;
self.nodes[index_offset + right_offset]
};
tree_depth >>= 1;
path.push(sibling);
}
// the rest of the codebase has the elements going from leaf to root, adjust it here for
// easy of use/consistency sake
path.reverse();
let value = self.nodes[index_offset + index];
(value, path)
}
}
impl<T> From<T> for Mmr
where
T: IntoIterator<Item = Word>,
{
fn from(values: T) -> Self {
let mut mmr = Mmr::new();
for v in values {
mmr.add(v)
}
mmr
}
}
// UTILITIES
// ===============================================================================================
/// Given a 0-indexed leaf position and the current forest, return the tree number responsible for
/// the position.
///
/// Note:
/// The result is a tree position `p`, it has the following interpretations. $p+1$ is the depth of
/// the tree, which corresponds to the size of a Merkle proof for that tree. $2^p$ is equal to the
/// number of leaves in this particular tree. and $2^(p+1)-1$ corresponds to size of the tree.
pub(crate) const fn leaf_to_corresponding_tree(pos: usize, forest: usize) -> Option<u32> {
if pos >= forest {
None
} else {
// - each bit in the forest is a unique tree and the bit position its power-of-two size
// - each tree owns a consecutive range of positions equal to its size from left-to-right
// - this means the first tree owns from `0` up to the `2^k_0` first positions, where `k_0`
// is the highest true bit position, the second tree from `2^k_0 + 1` up to `2^k_1` where
// `k_1` is the second higest bit, so on.
// - this means the highest bits work as a category marker, and the position is owned by
// the first tree which doesn't share a high bit with the position
let before = forest & pos;
let after = forest ^ before;
let tree = after.ilog2();
Some(tree)
}
}
/// Return a bitmask for the bits including and above the given position.
pub(crate) const fn high_bitmask(bit: u32) -> usize {
if bit > usize::BITS - 1 {
0
} else {
usize::MAX << bit
}
}
/// Return the total number of nodes of a given forest
///
/// Panics:
///
/// This will panic if the forest has size greater than `usize::MAX / 2`
pub(crate) const fn nodes_in_forest(forest: usize) -> usize {
// - the size of a perfect binary tree is $2^{k+1}-1$ or $2*2^k-1$
// - the forest represents the sum of $2^k$ so a single multiplication is necessary
// - the number of `-1` is the same as the number of trees, which is the same as the number
// bits set
let tree_count = forest.count_ones() as usize;
forest * 2 - tree_count
}

+ 15
- 0
src/merkle/mmr/mod.rs

@ -0,0 +1,15 @@
mod accumulator;
mod bit;
mod full;
mod proof;
#[cfg(test)]
mod tests;
use super::{Rpo256, Word};
// REEXPORTS
// ================================================================================================
pub use accumulator::MmrPeaks;
pub use full::Mmr;
pub use proof::MmrProof;

+ 33
- 0
src/merkle/mmr/proof.rs

@ -0,0 +1,33 @@
/// The representation of a single Merkle path.
use super::super::MerklePath;
use super::full::{high_bitmask, leaf_to_corresponding_tree};
#[derive(Debug, Clone, PartialEq)]
pub struct MmrProof {
/// The state of the MMR when the MmrProof was created.
pub forest: usize,
/// The position of the leaf value on this MmrProof.
pub position: usize,
/// The Merkle opening, starting from the value's sibling up to and excluding the root of the
/// responsible tree.
pub merkle_path: MerklePath,
}
impl MmrProof {
/// Converts the leaf global position into a local position that can be used to verify the
/// merkle_path.
pub fn relative_pos(&self) -> usize {
let tree_bit = leaf_to_corresponding_tree(self.position, self.forest)
.expect("position must be part of the forest");
let forest_before = self.forest & high_bitmask(tree_bit + 1);
self.position - forest_before
}
pub fn peak_index(&self) -> usize {
let root = leaf_to_corresponding_tree(self.position, self.forest)
.expect("position must be part of the forest");
(self.forest.count_ones() - root - 1) as usize
}
}

+ 440
- 0
src/merkle/mmr/tests.rs

@ -0,0 +1,440 @@
use super::bit::TrueBitPositionIterator;
use super::full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest};
use super::{super::Vec, Mmr, Rpo256, Word};
use crate::merkle::{int_to_node, MerklePath};
#[test]
fn test_position_equal_or_higher_than_leafs_is_never_contained() {
let empty_forest = 0;
for pos in 1..1024 {
// pos is index, 0 based
// tree is a length counter, 1 based
// so a valid pos is always smaller, not equal, to tree
assert_eq!(leaf_to_corresponding_tree(pos, pos), None);
assert_eq!(leaf_to_corresponding_tree(pos, pos - 1), None);
// and empty forest has no trees, so no position is valid
assert_eq!(leaf_to_corresponding_tree(pos, empty_forest), None);
}
}
#[test]
fn test_position_zero_is_always_contained_by_the_highest_tree() {
for leaves in 1..1024usize {
let tree = leaves.ilog2();
assert_eq!(leaf_to_corresponding_tree(0, leaves), Some(tree));
}
}
#[test]
fn test_leaf_to_corresponding_tree() {
assert_eq!(leaf_to_corresponding_tree(0, 0b0001), Some(0));
assert_eq!(leaf_to_corresponding_tree(0, 0b0010), Some(1));
assert_eq!(leaf_to_corresponding_tree(0, 0b0011), Some(1));
assert_eq!(leaf_to_corresponding_tree(0, 0b1011), Some(3));
// position one is always owned by the left-most tree
assert_eq!(leaf_to_corresponding_tree(1, 0b0010), Some(1));
assert_eq!(leaf_to_corresponding_tree(1, 0b0011), Some(1));
assert_eq!(leaf_to_corresponding_tree(1, 0b1011), Some(3));
// position two starts as its own root, and then it is merged with the left-most tree
assert_eq!(leaf_to_corresponding_tree(2, 0b0011), Some(0));
assert_eq!(leaf_to_corresponding_tree(2, 0b0100), Some(2));
assert_eq!(leaf_to_corresponding_tree(2, 0b1011), Some(3));
// position tree is merged on the left-most tree
assert_eq!(leaf_to_corresponding_tree(3, 0b0011), None);
assert_eq!(leaf_to_corresponding_tree(3, 0b0100), Some(2));
assert_eq!(leaf_to_corresponding_tree(3, 0b1011), Some(3));
assert_eq!(leaf_to_corresponding_tree(4, 0b0101), Some(0));
assert_eq!(leaf_to_corresponding_tree(4, 0b0110), Some(1));
assert_eq!(leaf_to_corresponding_tree(4, 0b0111), Some(1));
assert_eq!(leaf_to_corresponding_tree(4, 0b1000), Some(3));
assert_eq!(leaf_to_corresponding_tree(12, 0b01101), Some(0));
assert_eq!(leaf_to_corresponding_tree(12, 0b01110), Some(1));
assert_eq!(leaf_to_corresponding_tree(12, 0b01111), Some(1));
assert_eq!(leaf_to_corresponding_tree(12, 0b10000), Some(4));
}
#[test]
fn test_high_bitmask() {
assert_eq!(high_bitmask(0), usize::MAX);
assert_eq!(high_bitmask(1), usize::MAX << 1);
assert_eq!(high_bitmask(usize::BITS - 2), 0b11usize.rotate_right(2));
assert_eq!(high_bitmask(usize::BITS - 1), 0b1usize.rotate_right(1));
assert_eq!(high_bitmask(usize::BITS), 0, "overflow should be handled");
}
#[test]
fn test_nodes_in_forest() {
assert_eq!(nodes_in_forest(0b0000), 0);
assert_eq!(nodes_in_forest(0b0001), 1);
assert_eq!(nodes_in_forest(0b0010), 3);
assert_eq!(nodes_in_forest(0b0011), 4);
assert_eq!(nodes_in_forest(0b0100), 7);
assert_eq!(nodes_in_forest(0b0101), 8);
assert_eq!(nodes_in_forest(0b0110), 10);
assert_eq!(nodes_in_forest(0b0111), 11);
assert_eq!(nodes_in_forest(0b1000), 15);
assert_eq!(nodes_in_forest(0b1001), 16);
assert_eq!(nodes_in_forest(0b1010), 18);
assert_eq!(nodes_in_forest(0b1011), 19);
}
#[test]
fn test_nodes_in_forest_single_bit() {
assert_eq!(nodes_in_forest(2usize.pow(0)), 2usize.pow(1) - 1);
assert_eq!(nodes_in_forest(2usize.pow(1)), 2usize.pow(2) - 1);
assert_eq!(nodes_in_forest(2usize.pow(2)), 2usize.pow(3) - 1);
assert_eq!(nodes_in_forest(2usize.pow(3)), 2usize.pow(4) - 1);
for bit in 0..(usize::BITS - 1) {
let size = 2usize.pow(bit + 1) - 1;
assert_eq!(nodes_in_forest(1usize << bit), size);
}
}
const LEAVES: [Word; 7] = [
int_to_node(0),
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
];
#[test]
fn test_mmr_simple() {
let mut postorder = Vec::new();
postorder.push(LEAVES[0]);
postorder.push(LEAVES[1]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat()));
postorder.push(LEAVES[2]);
postorder.push(LEAVES[3]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat()));
postorder.push(*Rpo256::hash_elements(
&[postorder[2], postorder[5]].concat(),
));
postorder.push(LEAVES[4]);
postorder.push(LEAVES[5]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat()));
postorder.push(LEAVES[6]);
let mut mmr = Mmr::new();
assert_eq!(mmr.forest(), 0);
assert_eq!(mmr.nodes.len(), 0);
mmr.add(LEAVES[0]);
assert_eq!(mmr.forest(), 1);
assert_eq!(mmr.nodes.len(), 1);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 1);
assert_eq!(acc.peaks, &[postorder[0]]);
mmr.add(LEAVES[1]);
assert_eq!(mmr.forest(), 2);
assert_eq!(mmr.nodes.len(), 3);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 2);
assert_eq!(acc.peaks, &[postorder[2]]);
mmr.add(LEAVES[2]);
assert_eq!(mmr.forest(), 3);
assert_eq!(mmr.nodes.len(), 4);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 3);
assert_eq!(acc.peaks, &[postorder[2], postorder[3]]);
mmr.add(LEAVES[3]);
assert_eq!(mmr.forest(), 4);
assert_eq!(mmr.nodes.len(), 7);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 4);
assert_eq!(acc.peaks, &[postorder[6]]);
mmr.add(LEAVES[4]);
assert_eq!(mmr.forest(), 5);
assert_eq!(mmr.nodes.len(), 8);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 5);
assert_eq!(acc.peaks, &[postorder[6], postorder[7]]);
mmr.add(LEAVES[5]);
assert_eq!(mmr.forest(), 6);
assert_eq!(mmr.nodes.len(), 10);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 6);
assert_eq!(acc.peaks, &[postorder[6], postorder[9]]);
mmr.add(LEAVES[6]);
assert_eq!(mmr.forest(), 7);
assert_eq!(mmr.nodes.len(), 11);
assert_eq!(mmr.nodes.as_slice(), &postorder[0..mmr.nodes.len()]);
let acc = mmr.accumulator();
assert_eq!(acc.num_leaves, 7);
assert_eq!(acc.peaks, &[postorder[6], postorder[9], postorder[10]]);
}
#[test]
fn test_mmr_open() {
let mmr: Mmr = LEAVES.into();
let h01: Word = Rpo256::hash_elements(&LEAVES[0..2].concat()).into();
let h23: Word = Rpo256::hash_elements(&LEAVES[2..4].concat()).into();
// node at pos 7 is the root
assert!(
mmr.open(7).is_err(),
"Element 7 is not in the tree, result should be None"
);
// node at pos 6 is the root
let empty: MerklePath = MerklePath::new(vec![]);
let opening = mmr
.open(6)
.expect("Element 6 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, empty);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 6);
assert!(
mmr.accumulator().verify(LEAVES[6], opening),
"MmrProof should be valid for the current accumulator."
);
// nodes 4,5 are detph 1
let root_to_path = MerklePath::new(vec![LEAVES[4]]);
let opening = mmr
.open(5)
.expect("Element 5 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 5);
assert!(
mmr.accumulator().verify(LEAVES[5], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[5]]);
let opening = mmr
.open(4)
.expect("Element 4 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 4);
assert!(
mmr.accumulator().verify(LEAVES[4], opening),
"MmrProof should be valid for the current accumulator."
);
// nodes 0,1,2,3 are detph 2
let root_to_path = MerklePath::new(vec![LEAVES[2], h01]);
let opening = mmr
.open(3)
.expect("Element 3 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 3);
assert!(
mmr.accumulator().verify(LEAVES[3], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[3], h01]);
let opening = mmr
.open(2)
.expect("Element 2 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 2);
assert!(
mmr.accumulator().verify(LEAVES[2], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[0], h23]);
let opening = mmr
.open(1)
.expect("Element 1 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 1);
assert!(
mmr.accumulator().verify(LEAVES[1], opening),
"MmrProof should be valid for the current accumulator."
);
let root_to_path = MerklePath::new(vec![LEAVES[1], h23]);
let opening = mmr
.open(0)
.expect("Element 0 is contained in the tree, expected an opening result.");
assert_eq!(opening.merkle_path, root_to_path);
assert_eq!(opening.forest, mmr.forest);
assert_eq!(opening.position, 0);
assert!(
mmr.accumulator().verify(LEAVES[0], opening),
"MmrProof should be valid for the current accumulator."
);
}
#[test]
fn test_mmr_get() {
let mmr: Mmr = LEAVES.into();
assert_eq!(
mmr.get(0).unwrap(),
LEAVES[0],
"value at pos 0 must correspond"
);
assert_eq!(
mmr.get(1).unwrap(),
LEAVES[1],
"value at pos 1 must correspond"
);
assert_eq!(
mmr.get(2).unwrap(),
LEAVES[2],
"value at pos 2 must correspond"
);
assert_eq!(
mmr.get(3).unwrap(),
LEAVES[3],
"value at pos 3 must correspond"
);
assert_eq!(
mmr.get(4).unwrap(),
LEAVES[4],
"value at pos 4 must correspond"
);
assert_eq!(
mmr.get(5).unwrap(),
LEAVES[5],
"value at pos 5 must correspond"
);
assert_eq!(
mmr.get(6).unwrap(),
LEAVES[6],
"value at pos 6 must correspond"
);
assert!(mmr.get(7).is_err());
}
#[test]
fn test_mmr_invariants() {
let mut mmr = Mmr::new();
for v in 1..=1028 {
mmr.add(int_to_node(v));
let accumulator = mmr.accumulator();
assert_eq!(
v as usize,
mmr.forest(),
"MMR leaf count must increase by one on every add"
);
assert_eq!(
v as usize, accumulator.num_leaves,
"MMR and its accumulator must match leaves count"
);
assert_eq!(
accumulator.num_leaves.count_ones() as usize,
accumulator.peaks.len(),
"bits on leaves must match the number of peaks"
);
let expected_nodes: usize = TrueBitPositionIterator::new(mmr.forest())
.map(|bit_pos| nodes_in_forest(1 << bit_pos))
.sum();
assert_eq!(
expected_nodes,
mmr.nodes.len(),
"the sum of every tree size must be equal to the number of nodes in the MMR (forest: {:b})",
mmr.forest(),
);
}
}
#[test]
fn test_bit_position_iterator() {
assert_eq!(TrueBitPositionIterator::new(0).count(), 0);
assert_eq!(TrueBitPositionIterator::new(0).rev().count(), 0);
assert_eq!(
TrueBitPositionIterator::new(1).collect::<Vec<u32>>(),
vec![0]
);
assert_eq!(
TrueBitPositionIterator::new(1).rev().collect::<Vec<u32>>(),
vec![0],
);
assert_eq!(
TrueBitPositionIterator::new(2).collect::<Vec<u32>>(),
vec![1]
);
assert_eq!(
TrueBitPositionIterator::new(2).rev().collect::<Vec<u32>>(),
vec![1],
);
assert_eq!(
TrueBitPositionIterator::new(3).collect::<Vec<u32>>(),
vec![0, 1],
);
assert_eq!(
TrueBitPositionIterator::new(3).rev().collect::<Vec<u32>>(),
vec![1, 0],
);
assert_eq!(
TrueBitPositionIterator::new(0b11010101).collect::<Vec<u32>>(),
vec![0, 2, 4, 6, 7],
);
assert_eq!(
TrueBitPositionIterator::new(0b11010101)
.rev()
.collect::<Vec<u32>>(),
vec![7, 6, 4, 2, 0],
);
}
mod property_tests {
use super::leaf_to_corresponding_tree;
use proptest::prelude::*;
proptest! {
#[test]
fn test_last_position_is_always_contained_in_the_last_tree(leaves in any::<usize>().prop_filter("cant have an empty tree", |v| *v != 0)) {
let last_pos = leaves - 1;
let lowest_bit = leaves.trailing_zeros();
assert_eq!(
leaf_to_corresponding_tree(last_pos, leaves),
Some(lowest_bit),
);
}
}
proptest! {
#[test]
fn test_contained_tree_is_always_power_of_two((leaves, pos) in any::<usize>().prop_flat_map(|v| (Just(v), 0..v))) {
let tree = leaf_to_corresponding_tree(pos, leaves).expect("pos is smaller than leaves, there should always be a corresponding tree");
let mask = 1usize << tree;
assert!(tree < usize::BITS, "the result must be a bit in usize");
assert!(mask & leaves != 0, "the result should be a tree in leaves");
}
}
}

+ 23
- 5
src/merkle/mod.rs

@ -1,18 +1,24 @@
use super::{
hash::rpo::{Rpo256, RpoDigest},
utils::collections::{vec, BTreeMap, Vec},
Felt, StarkField, Word, ZERO,
utils::collections::{vec, BTreeMap, BTreeSet, Vec},
Felt, StarkField, Word, WORD_SIZE, ZERO,
};
use core::fmt;
// REEXPORTS
// ================================================================================================
mod empty_roots;
pub use empty_roots::EmptySubtreeRoots;
mod index;
pub use index::NodeIndex;
mod merkle_tree;
pub use merkle_tree::MerkleTree;
pub use merkle_tree::{path_to_text, tree_to_text, MerkleTree};
mod path;
pub use path::MerklePath;
pub use path::{MerklePath, RootPath, ValuePath};
mod path_set;
pub use path_set::MerklePathSet;
@ -20,25 +26,35 @@ pub use path_set::MerklePathSet;
mod simple_smt;
pub use simple_smt::SimpleSmt;
mod mmr;
pub use mmr::{Mmr, MmrPeaks};
mod store;
pub use store::MerkleStore;
// ERRORS
// ================================================================================================
#[derive(Clone, Debug)]
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum MerkleError {
ConflictingRoots(Vec<Word>),
DepthTooSmall(u8),
DepthTooBig(u64),
NodeNotInStore(Word, NodeIndex),
NumLeavesNotPowerOfTwo(usize),
InvalidIndex(NodeIndex),
InvalidDepth { expected: u8, provided: u8 },
InvalidPath(MerklePath),
InvalidEntriesCount(usize, usize),
NodeNotInSet(u64),
RootNotInStore(Word),
}
impl fmt::Display for MerkleError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use MerkleError::*;
match self {
ConflictingRoots(roots) => write!(f, "the merkle paths roots do not match {roots:?}"),
DepthTooSmall(depth) => write!(f, "the provided depth {depth} is too small"),
DepthTooBig(depth) => write!(f, "the provided depth {depth} is too big"),
NumLeavesNotPowerOfTwo(leaves) => {
@ -55,6 +71,8 @@ impl fmt::Display for MerkleError {
InvalidPath(_path) => write!(f, "the provided path is not valid"),
InvalidEntriesCount(max, provided) => write!(f, "the provided number of entries is {provided}, but the maximum for the given depth is {max}"),
NodeNotInSet(index) => write!(f, "the node indexed by {index} is not in the set"),
NodeNotInStore(hash, index) => write!(f, "the node {:?} indexed by {} and depth {} is not in the store", hash, index.value(), index.depth(),),
RootNotInStore(root) => write!(f, "the root {:?} is not in the store", root),
}
}
}

+ 24
- 0
src/merkle/path.rs

@ -82,3 +82,27 @@ impl IntoIterator for MerklePath {
self.nodes.into_iter()
}
}
// MERKLE PATH CONTAINERS
// ================================================================================================
/// A container for a [Word] value and its [MerklePath] opening.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct ValuePath {
/// The node value opening for `path`.
pub value: Word,
/// The path from `value` to `root` (exclusive).
pub path: MerklePath,
}
/// A container for a [MerklePath] and its [Word] root.
///
/// This structure does not provide any guarantees regarding the correctness of the path to the
/// root. For more information, check [MerklePath::verify].
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct RootPath {
/// The node value opening for `path`.
pub root: Word,
/// The path from `value` to `root` (exclusive).
pub path: MerklePath,
}

+ 105
- 23
src/merkle/path_set.rs

@ -1,4 +1,4 @@
use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, Vec, Word, ZERO};
use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, ValuePath, Vec, Word, ZERO};
// MERKLE PATH SET
// ================================================================================================
@ -76,15 +76,23 @@ impl MerklePathSet {
});
}
let index_value = index.to_scalar_index();
let parity = index_value & 1;
let index_value = index_value / 2;
let parity = index.value() & 1;
let path_key = index.value() - parity;
self.paths
.get(&index_value)
.ok_or(MerkleError::NodeNotInSet(index_value))
.get(&path_key)
.ok_or(MerkleError::NodeNotInSet(path_key))
.map(|path| path[parity as usize])
}
/// Returns a leaf at the specified index.
///
/// # Errors
/// * The specified index is not valid for the depth of the structure.
/// * Leaf with the requested path does not exist in the set.
pub fn get_leaf(&self, index: u64) -> Result<Word, MerkleError> {
self.get_node(NodeIndex::new(self.depth(), index))
}
/// Returns a Merkle path to the node at the specified index. The node itself is
/// not included in the path.
///
@ -103,18 +111,42 @@ impl MerklePathSet {
});
}
let index_value = index.to_scalar_index();
let index = index_value / 2;
let parity = index_value & 1;
let parity = index.value() & 1;
let path_key = index.value() - parity;
let mut path = self
.paths
.get(&index)
.get(&path_key)
.cloned()
.ok_or(MerkleError::NodeNotInSet(index))?;
.ok_or(MerkleError::NodeNotInSet(index.value()))?;
path.remove(parity as usize);
Ok(path)
}
/// Returns all paths in this path set together with their indexes.
pub fn to_paths(&self) -> Vec<(u64, ValuePath)> {
let mut result = Vec::with_capacity(self.paths.len() * 2);
for (&index, path) in self.paths.iter() {
// push path for the even index into the result
let path1 = ValuePath {
value: path[0],
path: MerklePath::new(path[1..].to_vec()),
};
result.push((index, path1));
// push path for the odd index into the result
let mut path2 = path.clone();
let leaf2 = path2.remove(1);
let path2 = ValuePath {
value: leaf2,
path: path2,
};
result.push((index + 1, path2));
}
result
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
@ -133,7 +165,7 @@ impl MerklePathSet {
value: Word,
mut path: MerklePath,
) -> Result<(), MerkleError> {
let depth = (path.len() + 1) as u8;
let depth = path.len() as u8;
let mut index = NodeIndex::new(depth, index_value);
if index.depth() != self.total_depth {
return Err(MerkleError::InvalidDepth {
@ -143,8 +175,6 @@ impl MerklePathSet {
}
// update the current path
let index_value = index.to_scalar_index();
let upper_index_value = index_value / 2;
let parity = index_value & 1;
path.insert(parity as usize, value);
@ -164,7 +194,8 @@ impl MerklePathSet {
}
// finish updating the path
self.paths.insert(upper_index_value, path);
let path_key = index_value - parity;
self.paths.insert(path_key, path);
Ok(())
}
@ -180,10 +211,9 @@ impl MerklePathSet {
return Err(MerkleError::InvalidIndex(index));
}
let path = match self
.paths
.get_mut(&index.clone().move_up().to_scalar_index())
{
let parity = index.value() & 1;
let path_key = index.value() - parity;
let path = match self.paths.get_mut(&path_key) {
Some(path) => path,
None => return Err(MerkleError::NodeNotInSet(base_index_value)),
};
@ -247,7 +277,7 @@ mod tests {
let root_exp = calculate_parent_hash(parent0, 0, parent1);
let set = super::MerklePathSet::new(3)
let set = super::MerklePathSet::new(2)
.with_paths([(0, leaf0, vec![leaf1, parent1].into())])
.unwrap();
@ -259,7 +289,7 @@ mod tests {
let path_6 = vec![int_to_node(7), int_to_node(45), int_to_node(123)];
let hash_6 = int_to_node(6);
let index = 6_u64;
let depth = 4_u8;
let depth = 3_u8;
let set = super::MerklePathSet::new(depth)
.with_paths([(index, hash_6, path_6.clone().into())])
.unwrap();
@ -274,7 +304,7 @@ mod tests {
let path_6 = vec![int_to_node(7), int_to_node(45), int_to_node(123)];
let hash_6 = int_to_node(6);
let index = 6_u64;
let depth = 4_u8;
let depth = 3_u8;
let set = MerklePathSet::new(depth)
.with_paths([(index, hash_6, path_6.into())])
.unwrap();
@ -304,7 +334,7 @@ mod tests {
let index_6 = 6_u64;
let index_5 = 5_u64;
let index_4 = 4_u64;
let depth = 4_u8;
let depth = 3_u8;
let mut set = MerklePathSet::new(depth)
.with_paths([
(index_6, hash_6, path_6.into()),
@ -329,6 +359,58 @@ mod tests {
assert_eq!(new_hash_5, new_path_4[0]);
}
#[test]
fn depth_3_is_correct() {
let a = int_to_node(1);
let b = int_to_node(2);
let c = int_to_node(3);
let d = int_to_node(4);
let e = int_to_node(5);
let f = int_to_node(6);
let g = int_to_node(7);
let h = int_to_node(8);
let i = Rpo256::merge(&[a.into(), b.into()]);
let j = Rpo256::merge(&[c.into(), d.into()]);
let k = Rpo256::merge(&[e.into(), f.into()]);
let l = Rpo256::merge(&[g.into(), h.into()]);
let m = Rpo256::merge(&[i.into(), j.into()]);
let n = Rpo256::merge(&[k.into(), l.into()]);
let root = Rpo256::merge(&[m.into(), n.into()]);
let mut set = MerklePathSet::new(3);
let value = b;
let index = 1;
let path = MerklePath::new([a.into(), j.into(), n.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
let value = e;
let index = 4;
let path = MerklePath::new([f.into(), l.into(), m.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
let value = a;
let index = 0;
let path = MerklePath::new([b.into(), j.into(), n.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
let value = h;
let index = 7;
let path = MerklePath::new([g.into(), k.into(), m.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------

+ 75
- 62
src/merkle/simple_smt/mod.rs

@ -1,4 +1,6 @@
use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word};
use super::{
BTreeMap, EmptySubtreeRoots, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word,
};
#[cfg(test)]
mod tests;
@ -13,7 +15,7 @@ mod tests;
pub struct SimpleSmt {
root: Word,
depth: u8,
store: Store,
pub(crate) store: Store,
}
impl SimpleSmt {
@ -29,38 +31,55 @@ impl SimpleSmt {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates a new simple SMT.
///
/// The provided entries will be tuples of the leaves and their corresponding keys.
/// Creates a new simple SMT with the provided depth.
pub fn new(depth: u8) -> Result<Self, MerkleError> {
// validate the range of the depth.
if depth < Self::MIN_DEPTH {
return Err(MerkleError::DepthTooSmall(depth));
} else if Self::MAX_DEPTH < depth {
return Err(MerkleError::DepthTooBig(depth as u64));
}
let (store, root) = Store::new(depth);
Ok(Self { root, depth, store })
}
/// Appends the provided entries as leaves of the tree.
///
/// # Errors
///
/// The function will fail if the provided entries count exceed the maximum tree capacity, that
/// is `2^{depth}`.
pub fn new<R, I>(entries: R, depth: u8) -> Result<Self, MerkleError>
pub fn with_leaves<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
// check if the leaves count will fit the depth setup
let mut entries = entries.into_iter();
// validate the range of the depth.
let max = 1 << depth;
if depth < Self::MIN_DEPTH {
return Err(MerkleError::DepthTooSmall(depth));
} else if Self::MAX_DEPTH < depth {
return Err(MerkleError::DepthTooBig(depth as u64));
} else if entries.len() > max {
let max = 1 << self.depth;
if entries.len() > max {
return Err(MerkleError::InvalidEntriesCount(max, entries.len()));
}
let (store, root) = Store::new(depth);
let mut tree = Self { root, depth, store };
entries.try_for_each(|(key, leaf)| tree.insert_leaf(key, leaf))?;
// append leaves and return
entries.try_for_each(|(key, leaf)| self.insert_leaf(key, leaf))?;
Ok(self)
}
Ok(tree)
/// Replaces the internal empty digests used when a given depth doesn't contain a node.
pub fn with_empty_subtrees<I>(mut self, hashes: I) -> Self
where
I: IntoIterator<Item = RpoDigest>,
{
self.store
.replace_empty_subtrees(hashes.into_iter().collect());
self
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub const fn root(&self) -> Word {
self.root
@ -71,6 +90,9 @@ impl SimpleSmt {
self.depth
}
// PROVIDERS
// --------------------------------------------------------------------------------------------
/// Returns the set count of the keys of the leaves.
pub fn leaves_count(&self) -> usize {
self.store.leaves_count()
@ -81,16 +103,24 @@ impl SimpleSmt {
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
/// * The specified key does not exist
pub fn get_node(&self, index: &NodeIndex) -> Result<Word, MerkleError> {
if index.is_root() {
Err(MerkleError::DepthTooSmall(index.depth()))
} else if index.depth() > self.depth() {
Err(MerkleError::DepthTooBig(index.depth() as u64))
} else if index.depth() == self.depth() {
self.store.get_leaf_node(index.value())
self.store
.get_leaf_node(index.value())
.or_else(|| {
self.store
.empty_hashes
.get(index.depth() as usize)
.copied()
.map(Word::from)
})
.ok_or(MerkleError::InvalidIndex(*index))
} else {
let branch_node = self.store.get_branch_node(index)?;
let branch_node = self.store.get_branch_node(index);
Ok(Rpo256::merge(&[branch_node.left, branch_node.right]).into())
}
}
@ -100,23 +130,19 @@ impl SimpleSmt {
///
/// # Errors
/// Returns an error if:
/// * The specified key does not exist as a branch or leaf node
/// * The specified depth is greater than the depth of the tree.
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > self.depth() {
return Err(MerkleError::DepthTooBig(index.depth() as u64));
} else if index.depth() == self.depth() && !self.store.check_leaf_node_exists(index.value())
{
return Err(MerkleError::InvalidIndex(index.with_depth(self.depth())));
}
let mut path = Vec::with_capacity(index.depth() as usize);
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self.store.get_branch_node(&index)?;
let BranchNode { left, right } = self.store.get_branch_node(&index);
let value = if is_right { left } else { right };
path.push(*value);
}
@ -133,6 +159,9 @@ impl SimpleSmt {
self.get_path(NodeIndex::new(self.depth(), key))
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Replaces the leaf located at the specified key, and recomputes hashes by walking up the tree
///
/// # Errors
@ -156,10 +185,7 @@ impl SimpleSmt {
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self
.store
.get_branch_node(&index)
.unwrap_or_else(|_| self.store.get_empty_node(index.depth() as usize + 1));
let BranchNode { left, right } = self.store.get_branch_node(&index);
let (left, right) = if is_right {
(left, value)
} else {
@ -181,17 +207,17 @@ impl SimpleSmt {
/// respectively. Hashes for blank subtrees at each layer are stored in `empty_hashes`, beginning
/// with the root hash of an empty tree, and ending with the zero value of a leaf node.
#[derive(Debug, Clone, PartialEq, Eq)]
struct Store {
branches: BTreeMap<NodeIndex, BranchNode>,
pub(crate) struct Store {
pub(crate) branches: BTreeMap<NodeIndex, BranchNode>,
leaves: BTreeMap<u64, Word>,
empty_hashes: Vec<RpoDigest>,
pub(crate) empty_hashes: Vec<RpoDigest>,
depth: u8,
}
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct BranchNode {
left: RpoDigest,
right: RpoDigest,
pub(crate) struct BranchNode {
pub(crate) left: RpoDigest,
pub(crate) right: RpoDigest,
}
impl Store {
@ -200,16 +226,7 @@ impl Store {
let leaves = BTreeMap::new();
// Construct empty node digests for each layer of the tree
let empty_hashes: Vec<RpoDigest> = (0..depth + 1)
.scan(Word::default().into(), |state, _| {
let value = *state;
*state = Rpo256::merge(&[value, value]);
Some(value)
})
.collect::<Vec<_>>()
.into_iter()
.rev()
.collect();
let empty_hashes = EmptySubtreeRoots::empty_hashes(depth).to_vec();
let root = empty_hashes[0].into();
let store = Self {
@ -222,34 +239,30 @@ impl Store {
(store, root)
}
fn get_empty_node(&self, depth: usize) -> BranchNode {
let digest = self.empty_hashes[depth];
BranchNode {
left: digest,
right: digest,
}
fn replace_empty_subtrees(&mut self, hashes: Vec<RpoDigest>) {
self.empty_hashes = hashes;
}
fn check_leaf_node_exists(&self, key: u64) -> bool {
self.leaves.contains_key(&key)
}
fn get_leaf_node(&self, key: u64) -> Result<Word, MerkleError> {
self.leaves
.get(&key)
.cloned()
.ok_or(MerkleError::InvalidIndex(NodeIndex::new(self.depth, key)))
fn get_leaf_node(&self, key: u64) -> Option<Word> {
self.leaves.get(&key).copied()
}
fn insert_leaf_node(&mut self, key: u64, node: Word) {
self.leaves.insert(key, node);
}
fn get_branch_node(&self, index: &NodeIndex) -> Result<BranchNode, MerkleError> {
self.branches
.get(index)
.cloned()
.ok_or(MerkleError::InvalidIndex(*index))
fn get_branch_node(&self, index: &NodeIndex) -> BranchNode {
self.branches.get(index).cloned().unwrap_or_else(|| {
let node = self.empty_hashes[index.depth() as usize + 1];
BranchNode {
left: node,
right: node,
}
})
}
fn insert_branch_node(&mut self, index: NodeIndex, left: RpoDigest, right: RpoDigest) {

+ 31
- 24
src/merkle/simple_smt/tests.rs

@ -1,9 +1,7 @@
use super::{
super::{MerkleTree, RpoDigest, SimpleSmt},
super::{int_to_node, MerkleTree, RpoDigest, SimpleSmt},
NodeIndex, Rpo256, Vec, Word,
};
use crate::{Felt, FieldElement};
use core::iter;
use proptest::prelude::*;
use rand_utils::prng_array;
@ -32,7 +30,7 @@ const ZERO_VALUES8: [Word; 8] = [int_to_node(0); 8];
#[test]
fn build_empty_tree() {
let smt = SimpleSmt::new(iter::empty(), 3).unwrap();
let smt = SimpleSmt::new(3).unwrap();
let mt = MerkleTree::new(ZERO_VALUES8.to_vec()).unwrap();
assert_eq!(mt.root(), smt.root());
}
@ -40,7 +38,7 @@ fn build_empty_tree() {
#[test]
fn empty_digests_are_consistent() {
let depth = 5;
let root = SimpleSmt::new(iter::empty(), depth).unwrap().root();
let root = SimpleSmt::new(depth).unwrap().root();
let computed: [RpoDigest; 2] = (0..depth).fold([Default::default(); 2], |state, _| {
let digest = Rpo256::merge(&state);
[digest; 2]
@ -51,7 +49,7 @@ fn empty_digests_are_consistent() {
#[test]
fn build_sparse_tree() {
let mut smt = SimpleSmt::new(iter::empty(), 3).unwrap();
let mut smt = SimpleSmt::new(3).unwrap();
let mut values = ZERO_VALUES8.to_vec();
// insert single value
@ -83,7 +81,10 @@ fn build_sparse_tree() {
#[test]
fn build_full_tree() {
let tree = SimpleSmt::new(KEYS4.into_iter().zip(VALUES4.into_iter()), 2).unwrap();
let tree = SimpleSmt::new(2)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
.unwrap();
let (root, node2, node3) = compute_internal_nodes();
assert_eq!(root, tree.root());
@ -93,7 +94,10 @@ fn build_full_tree() {
#[test]
fn get_values() {
let tree = SimpleSmt::new(KEYS4.into_iter().zip(VALUES4.into_iter()), 2).unwrap();
let tree = SimpleSmt::new(2)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
.unwrap();
// check depth 2
assert_eq!(VALUES4[0], tree.get_node(&NodeIndex::new(2, 0)).unwrap());
@ -104,7 +108,10 @@ fn get_values() {
#[test]
fn get_path() {
let tree = SimpleSmt::new(KEYS4.into_iter().zip(VALUES4.into_iter()), 2).unwrap();
let tree = SimpleSmt::new(2)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
.unwrap();
let (_, node2, node3) = compute_internal_nodes();
@ -133,18 +140,20 @@ fn get_path() {
#[test]
fn update_leaf() {
let mut tree = SimpleSmt::new(KEYS8.into_iter().zip(VALUES8.into_iter()), 3).unwrap();
let mut tree = SimpleSmt::new(3)
.unwrap()
.with_leaves(KEYS8.into_iter().zip(VALUES8.into_iter()))
.unwrap();
// update one value
let key = 3;
let new_node = int_to_node(9);
let mut expected_values = VALUES8.to_vec();
expected_values[key] = new_node;
let expected_tree = SimpleSmt::new(
KEYS8.into_iter().zip(expected_values.clone().into_iter()),
3,
)
.unwrap();
let expected_tree = SimpleSmt::new(3)
.unwrap()
.with_leaves(KEYS8.into_iter().zip(expected_values.clone().into_iter()))
.unwrap();
tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root, tree.root);
@ -153,8 +162,10 @@ fn update_leaf() {
let key = 6;
let new_node = int_to_node(10);
expected_values[key] = new_node;
let expected_tree =
SimpleSmt::new(KEYS8.into_iter().zip(expected_values.into_iter()), 3).unwrap();
let expected_tree = SimpleSmt::new(3)
.unwrap()
.with_leaves(KEYS8.into_iter().zip(expected_values.into_iter()))
.unwrap();
tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root, tree.root);
@ -189,7 +200,7 @@ fn small_tree_opening_is_consistent() {
let depth = 3;
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
let tree = SimpleSmt::new(entries, depth).unwrap();
let tree = SimpleSmt::new(depth).unwrap().with_leaves(entries).unwrap();
assert_eq!(tree.root(), Word::from(k));
@ -220,7 +231,7 @@ proptest! {
key in prop::num::u64::ANY,
leaf in prop::num::u64::ANY,
) {
let mut tree = SimpleSmt::new(iter::empty(), depth).unwrap();
let mut tree = SimpleSmt::new(depth).unwrap();
let key = key % (1 << depth as u64);
let leaf = int_to_node(leaf);
@ -241,7 +252,7 @@ proptest! {
count in 2u8..10u8,
ref seed in any::<[u8; 32]>()
) {
let mut tree = SimpleSmt::new(iter::empty(), depth).unwrap();
let mut tree = SimpleSmt::new(depth).unwrap();
let mut seed = *seed;
let leaves = (1 << depth) - 1;
@ -275,7 +286,3 @@ fn compute_internal_nodes() -> (Word, Word, Word) {
(root.into(), node2.into(), node3.into())
}
const fn int_to_node(value: u64) -> Word {
[Felt::new(value), Felt::ZERO, Felt::ZERO, Felt::ZERO]
}

+ 478
- 0
src/merkle/store/mod.rs

@ -0,0 +1,478 @@
use super::{
BTreeMap, BTreeSet, EmptySubtreeRoots, MerkleError, MerklePath, MerklePathSet, MerkleTree,
NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, ValuePath, Vec, Word,
};
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
#[cfg(test)]
mod tests;
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct Node {
left: RpoDigest,
right: RpoDigest,
}
/// An in-memory data store for Merkle-lized data.
///
/// This is a in memory data store for Merkle trees, this store allows all the nodes of multiple
/// trees to live as long as necessary and without duplication, this allows the implementation of
/// space efficient persistent data structures.
///
/// Example usage:
///
/// ```rust
/// # use miden_crypto::{ZERO, Felt, Word};
/// # use miden_crypto::merkle::{NodeIndex, MerkleStore, MerkleTree};
/// # use miden_crypto::hash::rpo::Rpo256;
/// # const fn int_to_node(value: u64) -> Word {
/// # [Felt::new(value), ZERO, ZERO, ZERO]
/// # }
/// # let A = int_to_node(1);
/// # let B = int_to_node(2);
/// # let C = int_to_node(3);
/// # let D = int_to_node(4);
/// # let E = int_to_node(5);
/// # let F = int_to_node(6);
/// # let G = int_to_node(7);
/// # let H0 = int_to_node(8);
/// # let H1 = int_to_node(9);
/// # let T0 = MerkleTree::new([A, B, C, D, E, F, G, H0].to_vec()).expect("even number of leaves provided");
/// # let T1 = MerkleTree::new([A, B, C, D, E, F, G, H1].to_vec()).expect("even number of leaves provided");
/// # let ROOT0 = T0.root();
/// # let ROOT1 = T1.root();
/// let mut store = MerkleStore::new();
///
/// // the store is initialized with the SMT empty nodes
/// assert_eq!(store.num_internal_nodes(), 255);
///
/// // populates the store with two merkle trees, common nodes are shared
/// store.add_merkle_tree([A, B, C, D, E, F, G, H0]);
/// store.add_merkle_tree([A, B, C, D, E, F, G, H1]);
///
/// // every leaf except the last are the same
/// for i in 0..7 {
/// let d0 = store.get_node(ROOT0, NodeIndex::new(3, i)).unwrap();
/// let d1 = store.get_node(ROOT1, NodeIndex::new(3, i)).unwrap();
/// assert_eq!(d0, d1, "Both trees have the same leaf at pos {i}");
/// }
///
/// // The leafs A-B-C-D are the same for both trees, so are their 2 immediate parents
/// for i in 0..4 {
/// let d0 = store.get_path(ROOT0, NodeIndex::new(3, i)).unwrap();
/// let d1 = store.get_path(ROOT1, NodeIndex::new(3, i)).unwrap();
/// assert_eq!(d0.path[0..2], d1.path[0..2], "Both sub-trees are equal up to two levels");
/// }
///
/// // Common internal nodes are shared, the two added trees have a total of 30, but the store has
/// // only 10 new entries, corresponding to the 10 unique internal nodes of these trees.
/// assert_eq!(store.num_internal_nodes() - 255, 10);
/// ```
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct MerkleStore {
nodes: BTreeMap<RpoDigest, Node>,
}
impl Default for MerkleStore {
fn default() -> Self {
Self::new()
}
}
impl MerkleStore {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates an empty `MerkleStore` instance.
pub fn new() -> MerkleStore {
// pre-populate the store with the empty hashes
let subtrees = EmptySubtreeRoots::empty_hashes(255);
let nodes = subtrees
.iter()
.rev()
.copied()
.zip(subtrees.iter().rev().skip(1).copied())
.map(|(child, parent)| {
(
parent,
Node {
left: child,
right: child,
},
)
})
.collect();
MerkleStore { nodes }
}
/// Appends the provided merkle tree represented by its `leaves` to the set.
pub fn with_merkle_tree<I>(mut self, leaves: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = Word>,
{
self.add_merkle_tree(leaves)?;
Ok(self)
}
/// Appends the provided sparse merkle tree represented by its `entries` to the set.
pub fn with_sparse_merkle_tree<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
self.add_sparse_merkle_tree(entries)?;
Ok(self)
}
/// Appends the provided merkle path set.
pub fn with_merkle_path(
mut self,
index_value: u64,
node: Word,
path: MerklePath,
) -> Result<Self, MerkleError> {
self.add_merkle_path(index_value, node, path)?;
Ok(self)
}
/// Appends the provided merkle path set.
pub fn with_merkle_paths<I>(mut self, paths: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
{
self.add_merkle_paths(paths)?;
Ok(self)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Return a count of the non-leaf nodes in the store.
pub fn num_internal_nodes(&self) -> usize {
self.nodes.len()
}
/// Returns the node at `index` rooted on the tree `root`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_node(&self, root: Word, index: NodeIndex) -> Result<Word, MerkleError> {
let mut hash: RpoDigest = root.into();
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes
.get(&hash)
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
for bit in index.bit_iterator().rev() {
let node = self
.nodes
.get(&hash)
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
hash = if bit { node.right } else { node.left }
}
Ok(hash.into())
}
/// Returns the node at the specified `index` and its opening to the `root`.
///
/// The path starts at the sibling of the target leaf.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_path(&self, root: Word, index: NodeIndex) -> Result<ValuePath, MerkleError> {
let mut hash: RpoDigest = root.into();
let mut path = Vec::with_capacity(index.depth().into());
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes
.get(&hash)
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
for bit in index.bit_iterator().rev() {
let node = self
.nodes
.get(&hash)
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
hash = if bit {
path.push(node.left.into());
node.right
} else {
path.push(node.right.into());
node.left
}
}
// the path is computed from root to leaf, so it must be reversed
path.reverse();
Ok(ValuePath {
value: hash.into(),
path: MerklePath::new(path),
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Adds all the nodes of a Merkle tree represented by `leaves`.
///
/// This will instantiate a Merkle tree using `leaves` and include all the nodes into the
/// store.
///
/// # Errors
///
/// This method may return the following errors:
/// - `DepthTooSmall` if leaves is empty or contains only 1 element
/// - `NumLeavesNotPowerOfTwo` if the number of leaves is not a power-of-two
pub fn add_merkle_tree<I>(&mut self, leaves: I) -> Result<Word, MerkleError>
where
I: IntoIterator<Item = Word>,
{
let leaves: Vec<_> = leaves.into_iter().collect();
if leaves.len() < 2 {
return Err(MerkleError::DepthTooSmall(leaves.len() as u8));
}
let layers = leaves.len().ilog2();
let tree = MerkleTree::new(leaves)?;
let mut depth = 0;
let mut parent_offset = 1;
let mut child_offset = 2;
while depth < layers {
let layer_size = 1usize << depth;
for _ in 0..layer_size {
// merkle tree is using level form representation, so left and right siblings are
// next to each other
let left = tree.nodes[child_offset];
let right = tree.nodes[child_offset + 1];
self.nodes.insert(
tree.nodes[parent_offset].into(),
Node {
left: left.into(),
right: right.into(),
},
);
parent_offset += 1;
child_offset += 2;
}
depth += 1;
}
Ok(tree.nodes[1])
}
/// Adds all the nodes of a Sparse Merkle tree represented by `entries`.
///
/// This will instantiate a Sparse Merkle tree using `entries` and include all the nodes into
/// the store.
///
/// # Errors
///
/// This will return `InvalidEntriesCount` if the length of `entries` is not `63`.
pub fn add_sparse_merkle_tree<R, I>(&mut self, entries: R) -> Result<Word, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)?.with_leaves(entries)?;
for branch in smt.store.branches.values() {
let parent = Rpo256::merge(&[branch.left, branch.right]);
self.nodes.insert(
parent,
Node {
left: branch.left,
right: branch.right,
},
);
}
Ok(smt.root())
}
/// Adds all the nodes of a Merkle path represented by `path`, opening to `node`. Returns the
/// new root.
///
/// This will compute the sibling elements determined by the Merkle `path` and `node`, and
/// include all the nodes into the store.
pub fn add_merkle_path(
&mut self,
index_value: u64,
mut node: Word,
path: MerklePath,
) -> Result<Word, MerkleError> {
let mut index = NodeIndex::new(self.nodes.len() as u8, index_value);
for sibling in path {
let (left, right) = match index.is_value_odd() {
true => (sibling, node),
false => (node, sibling),
};
let parent = Rpo256::merge(&[left.into(), right.into()]);
self.nodes.insert(
parent,
Node {
left: left.into(),
right: right.into(),
},
);
index.move_up();
node = parent.into();
}
Ok(node)
}
/// Adds all the nodes of multiple Merkle paths into the store.
///
/// This will compute the sibling elements for each Merkle `path` and include all the nodes
/// into the store.
///
/// For further reference, check [MerkleStore::add_merkle_path].
///
/// # Errors
///
/// Every path must resolve to the same root, otherwise this will return an `ConflictingRoots`
/// error.
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<Word, MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
{
let paths: Vec<(u64, Word, MerklePath)> = paths.into_iter().collect();
let roots: BTreeSet<RpoDigest> = paths
.iter()
.map(|(index, node, path)| path.compute_root(*index, *node).into())
.collect();
if roots.len() != 1 {
return Err(MerkleError::ConflictingRoots(
roots.iter().map(|v| Word::from(*v)).collect(),
));
}
for (index_value, node, path) in paths {
self.add_merkle_path(index_value, node, path)?;
}
Ok(roots.iter().next().unwrap().into())
}
/// Appends the provided [MerklePathSet] into the store.
///
/// For further reference, check [MerkleStore::add_merkle_path].
pub fn add_merkle_path_set(&mut self, path_set: &MerklePathSet) -> Result<Word, MerkleError> {
let root = path_set.root();
for (index, path) in path_set.to_paths() {
self.add_merkle_path(index, path.value, path.path)?;
}
Ok(root)
}
/// Sets a node to `value`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn set_node(
&mut self,
mut root: Word,
index: NodeIndex,
value: Word,
) -> Result<RootPath, MerkleError> {
let node = value;
let ValuePath { value, path } = self.get_path(root, index)?;
// performs the update only if the node value differs from the opening
if node != value {
root = self.add_merkle_path(index.value(), node, path.clone())?;
}
Ok(RootPath { root, path })
}
pub fn merge_roots(&mut self, root1: Word, root2: Word) -> Result<Word, MerkleError> {
let root1: RpoDigest = root1.into();
let root2: RpoDigest = root2.into();
if !self.nodes.contains_key(&root1) {
Err(MerkleError::NodeNotInStore(
root1.into(),
NodeIndex::new(0, 0),
))
} else if !self.nodes.contains_key(&root1) {
Err(MerkleError::NodeNotInStore(
root2.into(),
NodeIndex::new(0, 0),
))
} else {
let parent: Word = Rpo256::merge(&[root1, root2]).into();
self.nodes.insert(
parent.into(),
Node {
left: root1,
right: root2,
},
);
Ok(parent)
}
}
}
// SERIALIZATION
// ================================================================================================
impl Serializable for Node {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
self.left.write_into(target);
self.right.write_into(target);
}
}
impl Deserializable for Node {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let left = RpoDigest::read_from(source)?;
let right = RpoDigest::read_from(source)?;
Ok(Node { left, right })
}
}
impl Serializable for MerkleStore {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_u64(self.nodes.len() as u64);
for (k, v) in self.nodes.iter() {
k.write_into(target);
v.write_into(target);
}
}
}
impl Deserializable for MerkleStore {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let len = source.read_u64()?;
let mut nodes: BTreeMap<RpoDigest, Node> = BTreeMap::new();
for _ in 0..len {
let key = RpoDigest::read_from(source)?;
let value = Node::read_from(source)?;
nodes.insert(key, value);
}
Ok(MerkleStore { nodes })
}
}

+ 637
- 0
src/merkle/store/tests.rs

@ -0,0 +1,637 @@
use super::*;
use crate::{
hash::rpo::Rpo256,
merkle::{int_to_node, MerklePathSet},
Felt, Word, WORD_SIZE, ZERO,
};
#[cfg(std)]
use std::error::Error;
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const LEAVES4: [Word; 4] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
];
const EMPTY: Word = [ZERO; WORD_SIZE];
#[test]
fn test_root_not_in_store() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
let store = MerkleStore::default().with_merkle_tree(LEAVES4)?;
assert_eq!(
store.get_node(LEAVES4[0], NodeIndex::new(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(LEAVES4[0])),
"Leaf 0 is not a root"
);
assert_eq!(
store.get_path(LEAVES4[0], NodeIndex::new(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(LEAVES4[0])),
"Leaf 0 is not a root"
);
Ok(())
}
#[test]
fn test_merkle_tree() -> Result<(), MerkleError> {
let mut store = MerkleStore::default();
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
store.add_merkle_tree(LEAVES4.to_vec())?;
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 0)),
Ok(LEAVES4[0]),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 1)),
Ok(LEAVES4[1]),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 2)),
Ok(LEAVES4[2]),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3)),
Ok(LEAVES4[3]),
"node 3 must be in the tree"
);
// STORE LEAVES MATCH TREE ===============================================================
// sanity check the values returned by the store and the tree
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 0)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 0)),
"node 0 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 1)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 1)),
"node 1 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 2)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 2)),
"node 2 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 3)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3)),
"node 3 must be the same for both MerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the tree
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 0))
.unwrap();
assert_eq!(
LEAVES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 1))
.unwrap();
assert_eq!(
LEAVES4[1], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 2))
.unwrap();
assert_eq!(
LEAVES4[2], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 2)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 3))
.unwrap();
assert_eq!(
LEAVES4[3], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 3)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn test_empty_roots() {
let store = MerkleStore::default();
let mut root = RpoDigest::new(EMPTY);
for depth in 0..255 {
root = Rpo256::merge(&[root; 2]);
assert!(
store.get_node(root.into(), NodeIndex::new(0, 0)).is_ok(),
"The root of the empty tree of depth {depth} must be registered"
);
}
}
#[test]
fn test_leaf_paths_for_empty_trees() -> Result<(), MerkleError> {
let store = MerkleStore::default();
// Starts at 1 because leafs are not included in the store.
// Ends at 64 because it is not possible to represent an index of a depth greater than 64,
// because a u64 is used to index the leaf.
for depth in 1..64 {
let smt = SimpleSmt::new(depth)?;
let index = NodeIndex::new(depth, 0);
let store_path = store.get_path(smt.root(), index)?;
let smt_path = smt.get_path(index)?;
assert_eq!(
store_path.value, EMPTY,
"the leaf of an empty tree is always ZERO"
);
assert_eq!(
store_path.path, smt_path,
"the returned merkle path does not match the computed values"
);
assert_eq!(
store_path.path.compute_root(depth.into(), EMPTY),
smt.root(),
"computed root from the path must match the empty tree root"
);
}
Ok(())
}
#[test]
fn test_get_invalid_node() {
let mut store = MerkleStore::default();
let mtree = MerkleTree::new(LEAVES4.to_vec()).expect("creating a merkle tree must work");
store
.add_merkle_tree(LEAVES4.to_vec())
.expect("adding a merkle tree to the store must work");
let _ = store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3));
}
#[test]
fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
let mut store = MerkleStore::default();
let keys2: [u64; 2] = [0, 1];
let leaves2: [Word; 2] = [int_to_node(1), int_to_node(2)];
store.add_sparse_merkle_tree(keys2.into_iter().zip(leaves2.into_iter()))?;
let smt = SimpleSmt::new(1)
.unwrap()
.with_leaves(keys2.into_iter().zip(leaves2.into_iter()))
.unwrap();
let idx = NodeIndex::new(1, 0);
assert_eq!(smt.get_node(&idx).unwrap(), leaves2[0]);
assert_eq!(
store.get_node(smt.root(), idx).unwrap(),
smt.get_node(&idx).unwrap()
);
let idx = NodeIndex::new(1, 1);
assert_eq!(smt.get_node(&idx).unwrap(), leaves2[1]);
assert_eq!(
store.get_node(smt.root(), idx).unwrap(),
smt.get_node(&idx).unwrap()
);
Ok(())
}
#[test]
fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
let mut store = MerkleStore::default();
store.add_sparse_merkle_tree(KEYS4.into_iter().zip(LEAVES4.into_iter()))?;
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(LEAVES4.into_iter()))
.unwrap();
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 0)),
Ok(LEAVES4[0]),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 1)),
Ok(LEAVES4[1]),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 2)),
Ok(LEAVES4[2]),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 3)),
Ok(LEAVES4[3]),
"node 3 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 4)),
Ok(EMPTY),
"unmodified node 4 must be ZERO"
);
// STORE LEAVES MATCH TREE ===============================================================
// sanity check the values returned by the store and the tree
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 0)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 0)),
"node 0 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 1)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 1)),
"node 1 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 2)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 2)),
"node 2 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 3)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 3)),
"node 3 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 4)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 4)),
"node 4 must be the same for both SparseMerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the tree
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 0))
.unwrap();
assert_eq!(
LEAVES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 1))
.unwrap();
assert_eq!(
LEAVES4[1], result.value,
"Value for merkle path at index 1 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 2))
.unwrap();
assert_eq!(
LEAVES4[2], result.value,
"Value for merkle path at index 2 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 2)),
Ok(result.path),
"merkle path for index 2 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 3))
.unwrap();
assert_eq!(
LEAVES4[3], result.value,
"Value for merkle path at index 3 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 3)),
Ok(result.path),
"merkle path for index 3 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 4))
.unwrap();
assert_eq!(
EMPTY, result.value,
"Value for merkle path at index 4 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 4)),
Ok(result.path),
"merkle path for index 4 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn test_add_merkle_paths() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
let i0 = 0;
let p0 = mtree.get_path(NodeIndex::new(2, i0)).unwrap();
let i1 = 1;
let p1 = mtree.get_path(NodeIndex::new(2, i1)).unwrap();
let i2 = 2;
let p2 = mtree.get_path(NodeIndex::new(2, i2)).unwrap();
let i3 = 3;
let p3 = mtree.get_path(NodeIndex::new(2, i3)).unwrap();
let paths = [
(i0, LEAVES4[i0 as usize], p0),
(i1, LEAVES4[i1 as usize], p1),
(i2, LEAVES4[i2 as usize], p2),
(i3, LEAVES4[i3 as usize], p3),
];
let mut store = MerkleStore::default();
store
.add_merkle_paths(paths.clone())
.expect("the valid paths must work");
let depth = 2;
let set = MerklePathSet::new(depth).with_paths(paths).unwrap();
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth(), 0)),
Ok(LEAVES4[0]),
"node 0 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth(), 1)),
Ok(LEAVES4[1]),
"node 1 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth(), 2)),
Ok(LEAVES4[2]),
"node 2 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth(), 3)),
Ok(LEAVES4[3]),
"node 3 must be in the set"
);
// STORE LEAVES MATCH SET ================================================================
// sanity check the values returned by the store and the set
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 0)),
store.get_node(set.root(), NodeIndex::new(set.depth(), 0)),
"node 0 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 1)),
store.get_node(set.root(), NodeIndex::new(set.depth(), 1)),
"node 1 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 2)),
store.get_node(set.root(), NodeIndex::new(set.depth(), 2)),
"node 2 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 3)),
store.get_node(set.root(), NodeIndex::new(set.depth(), 3)),
"node 3 must be the same for both SparseMerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the set
let result = store
.get_path(set.root(), NodeIndex::new(set.depth(), 0))
.unwrap();
assert_eq!(
LEAVES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(set.root(), NodeIndex::new(set.depth(), 1))
.unwrap();
assert_eq!(
LEAVES4[1], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(set.root(), NodeIndex::new(set.depth(), 2))
.unwrap();
assert_eq!(
LEAVES4[2], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 2)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(set.root(), NodeIndex::new(set.depth(), 3))
.unwrap();
assert_eq!(
LEAVES4[3], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 3)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn wont_open_to_different_depth_root() {
let empty = EmptySubtreeRoots::empty_hashes(64);
let a = [Felt::new(1); 4];
let b = [Felt::new(2); 4];
// Compute the root for a different depth. We cherry-pick this specific depth to prevent a
// regression to a bug in the past that allowed the user to fetch a node at a depth lower than
// the inserted path of a Merkle tree.
let mut root = Rpo256::merge(&[a.into(), b.into()]);
for depth in (1..=63).rev() {
root = Rpo256::merge(&[root, empty[depth]]);
}
let root = Word::from(root);
// For this example, the depth of the Merkle tree is 1, as we have only two leaves. Here we
// attempt to fetch a node on the maximum depth, and it should fail because the root shouldn't
// exist for the set.
let store = MerkleStore::default().with_merkle_tree([a, b]).unwrap();
let index = NodeIndex::root();
let err = store.get_node(root, index).err().unwrap();
assert_eq!(err, MerkleError::RootNotInStore(root));
}
#[test]
fn store_path_opens_from_leaf() {
let a = [Felt::new(1); 4];
let b = [Felt::new(2); 4];
let c = [Felt::new(3); 4];
let d = [Felt::new(4); 4];
let e = [Felt::new(5); 4];
let f = [Felt::new(6); 4];
let g = [Felt::new(7); 4];
let h = [Felt::new(8); 4];
let i = Rpo256::merge(&[a.into(), b.into()]);
let j = Rpo256::merge(&[c.into(), d.into()]);
let k = Rpo256::merge(&[e.into(), f.into()]);
let l = Rpo256::merge(&[g.into(), h.into()]);
let m = Rpo256::merge(&[i.into(), j.into()]);
let n = Rpo256::merge(&[k.into(), l.into()]);
let root = Rpo256::merge(&[m.into(), n.into()]);
let store = MerkleStore::default()
.with_merkle_tree([a, b, c, d, e, f, g, h])
.unwrap();
let path = store
.get_path(root.into(), NodeIndex::new(3, 1))
.unwrap()
.path;
let expected = MerklePath::new([a.into(), j.into(), n.into()].to_vec());
assert_eq!(path, expected);
}
#[test]
fn test_set_node() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
let mut store = MerkleStore::default().with_merkle_tree(LEAVES4)?;
let value = int_to_node(42);
let index = NodeIndex::new(mtree.depth(), 0);
let new_root = store.set_node(mtree.root(), index, value)?.root;
assert_eq!(
store.get_node(new_root, index),
Ok(value),
"Value must have changed"
);
Ok(())
}
#[test]
fn test_constructors() -> Result<(), MerkleError> {
let store = MerkleStore::new().with_merkle_tree(LEAVES4)?;
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
let depth = mtree.depth();
let leaves = 2u64.pow(depth.into());
for index in 0..leaves {
let index = NodeIndex::new(depth, index);
let value_path = store.get_path(mtree.root(), index)?;
assert_eq!(mtree.get_path(index)?, value_path.path);
}
let store = MerkleStore::default()
.with_sparse_merkle_tree(KEYS4.into_iter().zip(LEAVES4.into_iter()))?;
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(LEAVES4.into_iter()))
.unwrap();
let depth = smt.depth();
for key in KEYS4 {
let index = NodeIndex::new(depth, key);
let value_path = store.get_path(smt.root(), index)?;
assert_eq!(smt.get_path(index)?, value_path.path);
}
let d = 2;
let paths = [
(0, LEAVES4[0], mtree.get_path(NodeIndex::new(d, 0)).unwrap()),
(1, LEAVES4[1], mtree.get_path(NodeIndex::new(d, 1)).unwrap()),
(2, LEAVES4[2], mtree.get_path(NodeIndex::new(d, 2)).unwrap()),
(3, LEAVES4[3], mtree.get_path(NodeIndex::new(d, 3)).unwrap()),
];
let store1 = MerkleStore::default().with_merkle_paths(paths.clone())?;
let store2 = MerkleStore::default()
.with_merkle_path(0, LEAVES4[0], mtree.get_path(NodeIndex::new(d, 0))?)?
.with_merkle_path(1, LEAVES4[1], mtree.get_path(NodeIndex::new(d, 1))?)?
.with_merkle_path(2, LEAVES4[2], mtree.get_path(NodeIndex::new(d, 2))?)?
.with_merkle_path(3, LEAVES4[3], mtree.get_path(NodeIndex::new(d, 3))?)?;
let set = MerklePathSet::new(d).with_paths(paths).unwrap();
for key in [0, 1, 2, 3] {
let index = NodeIndex::new(d, key);
let value_path1 = store1.get_path(set.root(), index)?;
let value_path2 = store2.get_path(set.root(), index)?;
assert_eq!(value_path1, value_path2);
let index = NodeIndex::new(d, key);
assert_eq!(set.get_path(index)?, value_path1.path);
}
Ok(())
}
#[cfg(std)]
#[test]
fn test_serialization() -> Result<(), Box<dyn Error>> {
let original = MerkleStore::new().with_merkle_tree(LEAVES4)?;
let decoded = MerkleStore::read_from_bytes(&original.to_bytes())?;
assert_eq!(original, decoded);
Ok(())
}

+ 21
- 0
src/utils.rs

@ -0,0 +1,21 @@
use super::Word;
use crate::utils::string::String;
use core::fmt::{self, Write};
// RE-EXPORTS
// ================================================================================================
pub use winter_utils::{
collections, string, uninit_vector, ByteReader, ByteWriter, Deserializable,
DeserializationError, Serializable, SliceReader,
};
/// Converts a [Word] into hex.
pub fn word_to_hex(w: &Word) -> Result<String, fmt::Error> {
let mut s = String::new();
for byte in w.iter().flat_map(|e| e.to_bytes()) {
write!(s, "{byte:02x}")?;
}
Ok(s)
}

Loading…
Cancel
Save