mirror of
https://github.com/arnaucube/miden-crypto.git
synced 2026-01-09 15:41:30 +01:00
feat: add test vectors for Falcon DSA
This commit is contained in:
@@ -9,46 +9,3 @@ pub use public_key::{PubKeyPoly, PublicKey};
|
||||
|
||||
mod secret_key;
|
||||
pub use secret_key::SecretKey;
|
||||
|
||||
// TESTS
|
||||
// ================================================================================================
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{dsa::rpo_falcon512::SecretKey, Word, ONE};
|
||||
use rand::SeedableRng;
|
||||
use rand_chacha::ChaCha20Rng;
|
||||
use winter_math::FieldElement;
|
||||
use winter_utils::{Deserializable, Serializable};
|
||||
|
||||
#[test]
|
||||
fn test_falcon_verification() {
|
||||
let seed = [0_u8; 32];
|
||||
let mut rng = ChaCha20Rng::from_seed(seed);
|
||||
|
||||
// generate random keys
|
||||
let sk = SecretKey::with_rng(&mut rng);
|
||||
let pk = sk.public_key();
|
||||
|
||||
// test secret key serialization/deserialization
|
||||
let mut buffer = vec![];
|
||||
sk.write_into(&mut buffer);
|
||||
let sk_deserialized = SecretKey::read_from_bytes(&buffer).unwrap();
|
||||
assert_eq!(sk.short_lattice_basis(), sk_deserialized.short_lattice_basis());
|
||||
|
||||
// sign a random message
|
||||
let message: Word = [ONE; 4];
|
||||
let signature = sk.sign_with_rng(message, &mut rng);
|
||||
|
||||
// make sure the signature verifies correctly
|
||||
assert!(pk.verify(message, &signature));
|
||||
|
||||
// a signature should not verify against a wrong message
|
||||
let message2: Word = [ONE.double(); 4];
|
||||
assert!(!pk.verify(message2, &signature));
|
||||
|
||||
// a signature should not verify against a wrong public key
|
||||
let sk2 = SecretKey::with_rng(&mut rng);
|
||||
assert!(!sk2.public_key().verify(message, &signature))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -76,7 +76,7 @@ impl SecretKey {
|
||||
}
|
||||
|
||||
/// Given a short basis [[g, -f], [G, -F]], computes the normalized LDL tree i.e., Falcon tree.
|
||||
fn from_short_lattice_basis(basis: ShortLatticeBasis) -> SecretKey {
|
||||
pub(crate) fn from_short_lattice_basis(basis: ShortLatticeBasis) -> SecretKey {
|
||||
// FFT each polynomial of the short basis.
|
||||
let basis_fft = to_complex_fft(&basis);
|
||||
// compute the Gram matrix.
|
||||
@@ -196,6 +196,98 @@ impl SecretKey {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// HELPER METHODS FOR TESTING
|
||||
// --------------------------------------------------------------------------------------------
|
||||
|
||||
/// Signs a message with the secret key relying on the provided randomness generator.
|
||||
#[cfg(test)]
|
||||
pub fn sign_with_rng_testing<R: Rng>(
|
||||
&self,
|
||||
message: &[u8],
|
||||
rng: &mut R,
|
||||
skip_bytes: usize,
|
||||
) -> Signature {
|
||||
use crate::dsa::rpo_falcon512::{
|
||||
hash_to_point::hash_to_point_shake256, tests::ChaCha, CHACHA_SEED_LEN,
|
||||
};
|
||||
|
||||
let mut dummy = vec![0_u8; skip_bytes];
|
||||
rng.fill_bytes(&mut dummy);
|
||||
let mut nonce_bytes = [0u8; SIG_NONCE_LEN];
|
||||
rng.fill_bytes(&mut nonce_bytes);
|
||||
let nonce = Nonce::new(nonce_bytes);
|
||||
|
||||
let h = self.compute_pub_key_poly();
|
||||
let c = hash_to_point_shake256(message, &nonce);
|
||||
|
||||
let s2 = loop {
|
||||
let mut chacha_seed = [0_u8; CHACHA_SEED_LEN];
|
||||
rng.fill_bytes(&mut chacha_seed);
|
||||
|
||||
let mut chacha_prng = ChaCha::new(chacha_seed.to_vec());
|
||||
|
||||
let s2 = self.sign_helper_testing(c.clone(), &mut chacha_prng);
|
||||
if let Some(s2) = s2 {
|
||||
break s2;
|
||||
}
|
||||
};
|
||||
|
||||
Signature::new(nonce, h, s2)
|
||||
}
|
||||
|
||||
/// Signs a message polynomial with the secret key.
|
||||
///
|
||||
/// Takes a randomness generator implementing `Rng` and message polynomial representing `c`
|
||||
/// the hash-to-point of the message to be signed. It outputs a signature polynomial `s2`.
|
||||
#[cfg(test)]
|
||||
fn sign_helper_testing<R: Rng>(
|
||||
&self,
|
||||
c: Polynomial<FalconFelt>,
|
||||
rng: &mut R,
|
||||
) -> Option<SignaturePoly> {
|
||||
let one_over_q = 1.0 / (MODULUS as f64);
|
||||
let c_over_q_fft = c.map(|cc| Complex::new(one_over_q * cc.value() as f64, 0.0)).fft();
|
||||
|
||||
// B = [[FFT(g), -FFT(f)], [FFT(G), -FFT(F)]]
|
||||
let [g_fft, minus_f_fft, big_g_fft, minus_big_f_fft] = to_complex_fft(&self.secret_key);
|
||||
let t0 = c_over_q_fft.hadamard_mul(&minus_big_f_fft);
|
||||
let t1 = -c_over_q_fft.hadamard_mul(&minus_f_fft);
|
||||
|
||||
let z = ffsampling(&(t0.clone(), t1.clone()), &self.tree, rng);
|
||||
let t0_min_z0 = t0.clone() - z.0;
|
||||
let t1_min_z1 = t1.clone() - z.1;
|
||||
|
||||
// s = (t-z) * B
|
||||
let s0 = t0_min_z0.hadamard_mul(&g_fft) + t1_min_z1.hadamard_mul(&big_g_fft);
|
||||
let s1 = t0_min_z0.hadamard_mul(&minus_f_fft) + t1_min_z1.hadamard_mul(&minus_big_f_fft);
|
||||
|
||||
// compute the norm of (s0||s1) and note that they are in FFT representation
|
||||
let length_squared: f64 = (s0.coefficients.iter().map(|a| (a * a.conj()).re).sum::<f64>()
|
||||
+ s1.coefficients.iter().map(|a| (a * a.conj()).re).sum::<f64>())
|
||||
/ (N as f64);
|
||||
|
||||
if length_squared < (SIG_L2_BOUND as f64) {
|
||||
let bold_s = [-s0, s1];
|
||||
|
||||
let s2 = bold_s[1].ifft();
|
||||
let s2_coef: [i16; N] = s2
|
||||
.coefficients
|
||||
.iter()
|
||||
.map(|a| a.re.round() as i16)
|
||||
.collect::<Vec<i16>>()
|
||||
.try_into()
|
||||
.expect("The number of coefficients should be equal to N");
|
||||
|
||||
if let Ok(s2) = SignaturePoly::try_from(&s2_coef) {
|
||||
return Some(s2);
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SERIALIZATION / DESERIALIZATION
|
||||
@@ -304,9 +396,9 @@ impl Deserializable for SecretKey {
|
||||
fn to_complex_fft(basis: &[Polynomial<i16>; 4]) -> [Polynomial<Complex<f64>>; 4] {
|
||||
let [g, f, big_g, big_f] = basis.clone();
|
||||
let g_fft = g.map(|cc| Complex64::new(*cc as f64, 0.0)).fft();
|
||||
let minus_f_fft = f.map(|cc| -Complex64::new(*cc as f64, 0.0)).fft();
|
||||
let minus_f_fft = f.map(|cc| Complex64::new(*cc as f64, 0.0)).fft();
|
||||
let big_g_fft = big_g.map(|cc| Complex64::new(*cc as f64, 0.0)).fft();
|
||||
let minus_big_f_fft = big_f.map(|cc| -Complex64::new(*cc as f64, 0.0)).fft();
|
||||
let minus_big_f_fft = big_f.map(|cc| Complex64::new(*cc as f64, 0.0)).fft();
|
||||
[g_fft, minus_f_fft, big_g_fft, minus_big_f_fft]
|
||||
}
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
use core::f64::consts::LN_2;
|
||||
use rand::Rng;
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
@@ -28,7 +27,11 @@ fn base_sampler(bytes: [u8; 9]) -> i16 {
|
||||
198,
|
||||
1,
|
||||
];
|
||||
let u = u128::from_be_bytes([vec![0u8; 7], bytes.to_vec()].concat().try_into().unwrap());
|
||||
|
||||
let mut tmp = bytes.to_vec();
|
||||
tmp.extend_from_slice(&[0u8; 7]);
|
||||
tmp.reverse();
|
||||
let u = u128::from_be_bytes(tmp.try_into().expect("should have length 16"));
|
||||
RCDT.into_iter().filter(|r| u < *r).count() as i16
|
||||
}
|
||||
|
||||
@@ -72,16 +75,20 @@ fn approx_exp(x: f64, ccs: f64) -> u64 {
|
||||
}
|
||||
|
||||
/// A random bool that is true with probability ≈ ccs · exp(-x).
|
||||
fn ber_exp(x: f64, ccs: f64, random_bytes: [u8; 7]) -> bool {
|
||||
// 0.69314718055994530941 = ln(2)
|
||||
let s = f64::floor(x / LN_2) as usize;
|
||||
let r = x - LN_2 * (s as f64);
|
||||
let shamt = usize::min(s, 63);
|
||||
let z = ((((approx_exp(r, ccs) as u128) << 1) - 1) >> shamt) as u64;
|
||||
let mut w = 0i16;
|
||||
for (index, i) in (0..64).step_by(8).rev().enumerate() {
|
||||
let byte = random_bytes[index];
|
||||
w = (byte as i16) - (((z >> i) & 0xff) as i16);
|
||||
fn ber_exp<R: Rng>(x: f64, ccs: f64, rng: &mut R) -> bool {
|
||||
const LN2: f64 = std::f64::consts::LN_2;
|
||||
const ILN2: f64 = 1.0 / LN2;
|
||||
let s = f64::floor(x * ILN2);
|
||||
let r = x - s * LN2;
|
||||
let s = (s as u64).min(63);
|
||||
let z = ((approx_exp(r, ccs) << 1) - 1) >> s;
|
||||
|
||||
let mut w = 0_i32;
|
||||
for i in (0..=56).rev().step_by(8) {
|
||||
let mut dest = [0_u8; 1];
|
||||
rng.fill_bytes(&mut dest);
|
||||
let p = u8::from_be_bytes(dest);
|
||||
w = (p as i32) - (z >> i & 0xFF) as i32;
|
||||
if w != 0 {
|
||||
break;
|
||||
}
|
||||
@@ -100,14 +107,20 @@ pub(crate) fn sampler_z<R: Rng>(mu: f64, sigma: f64, sigma_min: f64, rng: &mut R
|
||||
let r = mu - s;
|
||||
let ccs = sigma_min * isigma;
|
||||
loop {
|
||||
let z0 = base_sampler(rng.gen());
|
||||
let random_byte: u8 = rng.gen();
|
||||
let mut dest = [0_u8; 9];
|
||||
rng.fill_bytes(&mut dest);
|
||||
let z0 = base_sampler(dest);
|
||||
|
||||
let mut dest = [0_u8; 1];
|
||||
rng.fill_bytes(&mut dest);
|
||||
let random_byte: u8 = dest[0];
|
||||
|
||||
let b = (random_byte & 1) as i16;
|
||||
let z = b + ((b << 1) - 1) * z0;
|
||||
let z = b + (2 * b - 1) * z0;
|
||||
let zf_min_r = (z as f64) - r;
|
||||
// x = ((z-r)^2)/(2*sigma^2) - ((z-b)^2)/(2*sigma0^2)
|
||||
let x = zf_min_r * zf_min_r * dss - (z0 * z0) as f64 * INV_2SIGMA_MAX_SQ;
|
||||
if ber_exp(x, ccs, rng.gen()) {
|
||||
|
||||
if ber_exp(x, ccs, rng) {
|
||||
return z + (s as i16);
|
||||
}
|
||||
}
|
||||
@@ -115,80 +128,7 @@ pub(crate) fn sampler_z<R: Rng>(mu: f64, sigma: f64, sigma_min: f64, rng: &mut R
|
||||
|
||||
#[cfg(all(test, feature = "std"))]
|
||||
mod test {
|
||||
use alloc::vec::Vec;
|
||||
use rand::RngCore;
|
||||
use std::{thread::sleep, time::Duration};
|
||||
|
||||
use super::{approx_exp, ber_exp, sampler_z};
|
||||
|
||||
/// RNG used only for testing purposes, whereby the produced
|
||||
/// string of random bytes is equal to the one it is initialized
|
||||
/// with. Whatever you do, do not use this RNG in production.
|
||||
struct UnsafeBufferRng {
|
||||
buffer: Vec<u8>,
|
||||
index: usize,
|
||||
}
|
||||
|
||||
impl UnsafeBufferRng {
|
||||
fn new(buffer: &[u8]) -> Self {
|
||||
Self { buffer: buffer.to_vec(), index: 0 }
|
||||
}
|
||||
|
||||
fn next(&mut self) -> u8 {
|
||||
if self.buffer.len() <= self.index {
|
||||
// panic!("Ran out of buffer.");
|
||||
sleep(Duration::from_millis(10));
|
||||
0u8
|
||||
} else {
|
||||
let return_value = self.buffer[self.index];
|
||||
self.index += 1;
|
||||
return_value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl RngCore for UnsafeBufferRng {
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
// let bytes: [u8; 4] = (0..4)
|
||||
// .map(|_| self.next())
|
||||
// .collect_vec()
|
||||
// .try_into()
|
||||
// .unwrap();
|
||||
// u32::from_be_bytes(bytes)
|
||||
u32::from_le_bytes([self.next(), 0, 0, 0])
|
||||
}
|
||||
|
||||
fn next_u64(&mut self) -> u64 {
|
||||
// let bytes: [u8; 8] = (0..8)
|
||||
// .map(|_| self.next())
|
||||
// .collect_vec()
|
||||
// .try_into()
|
||||
// .unwrap();
|
||||
// u64::from_be_bytes(bytes)
|
||||
u64::from_le_bytes([self.next(), 0, 0, 0, 0, 0, 0, 0])
|
||||
}
|
||||
|
||||
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
||||
for d in dest.iter_mut() {
|
||||
*d = self.next();
|
||||
}
|
||||
}
|
||||
|
||||
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
|
||||
for d in dest.iter_mut() {
|
||||
*d = self.next();
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_unsafe_buffer_rng() {
|
||||
let seed_bytes = hex::decode("7FFECD162AE2").unwrap();
|
||||
let mut rng = UnsafeBufferRng::new(&seed_bytes);
|
||||
let generated_bytes: Vec<u8> = (0..seed_bytes.len()).map(|_| rng.next()).collect();
|
||||
assert_eq!(seed_bytes, generated_bytes);
|
||||
}
|
||||
use super::approx_exp;
|
||||
|
||||
#[test]
|
||||
fn test_approx_exp() {
|
||||
@@ -230,69 +170,4 @@ mod test {
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ber_exp() {
|
||||
let kats = [
|
||||
(
|
||||
1.268_314_048_020_498_4,
|
||||
0.749_990_853_267_664_9,
|
||||
hex::decode("ea000000000000").unwrap(),
|
||||
false,
|
||||
),
|
||||
(
|
||||
0.001_563_917_959_143_409_6,
|
||||
0.749_990_853_267_664_9,
|
||||
hex::decode("6c000000000000").unwrap(),
|
||||
true,
|
||||
),
|
||||
(
|
||||
0.017_921_215_753_999_235,
|
||||
0.749_990_853_267_664_9,
|
||||
hex::decode("c2000000000000").unwrap(),
|
||||
false,
|
||||
),
|
||||
(
|
||||
0.776_117_648_844_980_6,
|
||||
0.751_181_554_542_520_8,
|
||||
hex::decode("58000000000000").unwrap(),
|
||||
true,
|
||||
),
|
||||
];
|
||||
for (x, ccs, bytes, answer) in kats {
|
||||
assert_eq!(answer, ber_exp(x, ccs, bytes.try_into().unwrap()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sampler_z() {
|
||||
let sigma_min = 1.277833697;
|
||||
// known answers from the doc, table 3.2, page 44
|
||||
// https://falcon-sign.info/falcon.pdf
|
||||
// The zeros were added to account for dropped bytes.
|
||||
let kats = [
|
||||
(-91.90471153063714,1.7037990414754918,hex::decode("0fc5442ff043d66e91d1ea000000000000cac64ea5450a22941edc6c").unwrap(),-92),
|
||||
(-8.322564895434937,1.7037990414754918,hex::decode("f4da0f8d8444d1a77265c2000000000000ef6f98bbbb4bee7db8d9b3").unwrap(),-8),
|
||||
(-19.096516109216804,1.7035823083824078,hex::decode("db47f6d7fb9b19f25c36d6000000000000b9334d477a8bc0be68145d").unwrap(),-20),
|
||||
(-11.335543982423326, 1.7035823083824078, hex::decode("ae41b4f5209665c74d00dc000000000000c1a8168a7bb516b3190cb42c1ded26cd52000000000000aed770eca7dd334e0547bcc3c163ce0b").unwrap(), -12),
|
||||
(7.9386734193997555, 1.6984647769450156, hex::decode("31054166c1012780c603ae0000000000009b833cec73f2f41ca5807c000000000000c89c92158834632f9b1555").unwrap(), 8),
|
||||
(-28.990850086867255, 1.6984647769450156, hex::decode("737e9d68a50a06dbbc6477").unwrap(), -30),
|
||||
(-9.071257914091655, 1.6980782114808988, hex::decode("a98ddd14bf0bf22061d632").unwrap(), -10),
|
||||
(-43.88754568839566, 1.6980782114808988, hex::decode("3cbf6818a68f7ab9991514").unwrap(), -41),
|
||||
(-58.17435547946095,1.7010983419195522,hex::decode("6f8633f5bfa5d26848668e0000000000003d5ddd46958e97630410587c").unwrap(),-61),
|
||||
(-43.58664906684732, 1.7010983419195522, hex::decode("272bc6c25f5c5ee53f83c40000000000003a361fbc7cc91dc783e20a").unwrap(), -46),
|
||||
(-34.70565203313315, 1.7009387219711465, hex::decode("45443c59574c2c3b07e2e1000000000000d9071e6d133dbe32754b0a").unwrap(), -34),
|
||||
(-44.36009577368896, 1.7009387219711465, hex::decode("6ac116ed60c258e2cbaeab000000000000728c4823e6da36e18d08da0000000000005d0cc104e21cc7fd1f5ca8000000000000d9dbb675266c928448059e").unwrap(), -44),
|
||||
(-21.783037079346236, 1.6958406126012802, hex::decode("68163bc1e2cbf3e18e7426").unwrap(), -23),
|
||||
(-39.68827784633828, 1.6958406126012802, hex::decode("d6a1b51d76222a705a0259").unwrap(), -40),
|
||||
(-18.488607061056847, 1.6955259305261838, hex::decode("f0523bfaa8a394bf4ea5c10000000000000f842366fde286d6a30803").unwrap(), -22),
|
||||
(-48.39610939101591, 1.6955259305261838, hex::decode("87bd87e63374cee62127fc0000000000006931104aab64f136a0485b").unwrap(), -50),
|
||||
];
|
||||
for (mu, sigma, random_bytes, answer) in kats {
|
||||
assert_eq!(
|
||||
sampler_z(mu, sigma, sigma_min, &mut UnsafeBufferRng::new(&random_bytes)),
|
||||
answer
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,6 +9,9 @@ mod keys;
|
||||
mod math;
|
||||
mod signature;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub use self::keys::{PubKeyPoly, PublicKey, SecretKey};
|
||||
pub use self::math::Polynomial;
|
||||
pub use self::signature::{Signature, SignatureHeader, SignaturePoly};
|
||||
@@ -48,6 +51,10 @@ const SIG_L2_BOUND: u64 = 34034726;
|
||||
/// Standard deviation of the Gaussian over the lattice.
|
||||
const SIGMA: f64 = 165.7366171829776;
|
||||
|
||||
/// Length of the seed for the ChaCha20-based PRNG.
|
||||
#[cfg(test)]
|
||||
pub(crate) const CHACHA_SEED_LEN: usize = 56;
|
||||
|
||||
// TYPE ALIASES
|
||||
// ================================================================================================
|
||||
|
||||
|
||||
2030
src/dsa/rpo_falcon512/tests.rs
Normal file
2030
src/dsa/rpo_falcon512/tests.rs
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user