In the Miden VM, we make use of different hash functions. Some of these are "traditional" hash functions, like `BLAKE3`, which are optimized for out-of-STARK performance, while others are algebraic hash functions, like `Rescue Prime`, and are more optimized for a better performance inside the STARK. In what follows, we benchmark several such hash functions and compare against other constructions that are used by other proving systems. More precisely, we benchmark:
In the Miden VM, we make use of different hash functions. Some of these are "traditional" hash functions, like `BLAKE3`, which are optimized for out-of-STARK performance, while others are algebraic hash functions, like `Rescue Prime`, and are more optimized for a better performance inside the STARK. In what follows, we benchmark several such hash functions and compare against other constructions that are used by other proving systems. More precisely, we benchmark:
* **BLAKE3** as specified [here](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf) and implemented [here](https://github.com/BLAKE3-team/BLAKE3) (with a wrapper exposed via this crate).
* **BLAKE3** as specified [here](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf) and implemented [here](https://github.com/BLAKE3-team/BLAKE3) (with a wrapper exposed via this crate).
@ -8,13 +10,13 @@ In the Miden VM, we make use of different hash functions. Some of these are "tra
* **Rescue Prime Optimized (RPO)** as specified [here](https://eprint.iacr.org/2022/1577) and implemented in this crate.
* **Rescue Prime Optimized (RPO)** as specified [here](https://eprint.iacr.org/2022/1577) and implemented in this crate.
* **Rescue Prime Extended (RPX)** a variant of the [xHash](https://eprint.iacr.org/2023/1045) hash function as implemented in this crate.
* **Rescue Prime Extended (RPX)** a variant of the [xHash](https://eprint.iacr.org/2023/1045) hash function as implemented in this crate.
## Comparison and Instructions
### Comparison and Instructions
### Comparison
#### Comparison
We benchmark the above hash functions using two scenarios. The first is a 2-to-1 $(a,b)\mapsto h(a,b)$ hashing where both $a$, $b$ and $h(a,b)$ are the digests corresponding to each of the hash functions.
We benchmark the above hash functions using two scenarios. The first is a 2-to-1 $(a,b)\mapsto h(a,b)$ hashing where both $a$, $b$ and $h(a,b)$ are the digests corresponding to each of the hash functions.
The second scenario is that of sequential hashing where we take a sequence of length $100$ field elements and hash these to produce a single digest. The digests are $4$ field elements in a prime field with modulus $2^{64} - 2^{32} + 1$ (i.e., 32 bytes) for Poseidon, Rescue Prime and RPO, and an array `[u8; 32]` for SHA3 and BLAKE3.
The second scenario is that of sequential hashing where we take a sequence of length $100$ field elements and hash these to produce a single digest. The digests are $4$ field elements in a prime field with modulus $2^{64} - 2^{32} + 1$ (i.e., 32 bytes) for Poseidon, Rescue Prime and RPO, and an array `[u8; 32]` for SHA3 and BLAKE3.
- On Graviton 3, RPO256 and RPX256 are run with SVE acceleration enabled.
- On Graviton 3, RPO256 and RPX256 are run with SVE acceleration enabled.
- On AMD EPYC 9R14, RPO256 and RPX256 are run with AVX2 acceleration enabled.
- On AMD EPYC 9R14, RPO256 and RPX256 are run with AVX2 acceleration enabled.
### Instructions
#### Instructions
Before you can run the benchmarks, you'll need to make sure you have Rust [installed](https://www.rust-lang.org/tools/install). After that, to run the benchmarks for RPO and BLAKE3, clone the current repository, and from the root directory of the repo run the following:
Before you can run the benchmarks, you'll need to make sure you have Rust [installed](https://www.rust-lang.org/tools/install). After that, to run the benchmarks for RPO and BLAKE3, clone the current repository, and from the root directory of the repo run the following:
```
```
@ -54,3 +56,47 @@ To run the benchmarks for Rescue Prime, Poseidon and SHA3, clone the following [
```
```
cargo bench hash
cargo bench hash
```
```
## Miden VM DSA
We make use of the following digital signature algorithms (DSA) in the Miden VM:
* **RPO-Falcon512** as specified [here](https://falcon-sign.info/falcon.pdf) with the one difference being the use of the RPO hash function for the hash-to-point algorithm (Algorithm 3 in the previous reference) instead of SHAKE256.
* **RPO-STARK** as specified [here](https://eprint.iacr.org/2024/1553), where the parameters are the ones for the unique-decoding regime (UDR) with the two differences:
* We rely on Conjecture 1 in the [ethSTARK](https://eprint.iacr.org/2021/582) paper.
* The number of FRI queries is $30$ and the grinding factor is $12$ bits. Thus using the previous point we can argue that the modified version achieves at least $102$ bits of average-case existential unforgeability security against $2^{113}$-query bound adversaries that can obtain up to $2^{64}$ signatures under the same public key.
Before you can run the benchmarks, you'll need to make sure you have Rust [installed](https://www.rust-lang.org/tools/install). After that, to run the benchmarks, clone the current repository, and from the root directory of the repo run the following: