|
|
@ -0,0 +1,292 @@ |
|
|
|
use super::{Felt, FeltRng, FieldElement, RandomCoin, RandomCoinError, RngCore, Word, ZERO};
|
|
|
|
use crate::{
|
|
|
|
hash::rpx::{Rpx256, RpxDigest},
|
|
|
|
utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable},
|
|
|
|
};
|
|
|
|
use alloc::{string::ToString, vec::Vec};
|
|
|
|
use rand_core::impls;
|
|
|
|
|
|
|
|
// CONSTANTS
|
|
|
|
// ================================================================================================
|
|
|
|
|
|
|
|
const STATE_WIDTH: usize = Rpx256::STATE_WIDTH;
|
|
|
|
const RATE_START: usize = Rpx256::RATE_RANGE.start;
|
|
|
|
const RATE_END: usize = Rpx256::RATE_RANGE.end;
|
|
|
|
const HALF_RATE_WIDTH: usize = (Rpx256::RATE_RANGE.end - Rpx256::RATE_RANGE.start) / 2;
|
|
|
|
|
|
|
|
// RPX RANDOM COIN
|
|
|
|
// ================================================================================================
|
|
|
|
/// A simplified version of the `SPONGE_PRG` reseedable pseudo-random number generator algorithm
|
|
|
|
/// described in <https://eprint.iacr.org/2011/499.pdf>.
|
|
|
|
///
|
|
|
|
/// The simplification is related to the following facts:
|
|
|
|
/// 1. A call to the reseed method implies one and only one call to the permutation function.
|
|
|
|
/// This is possible because in our case we never reseed with more than 4 field elements.
|
|
|
|
/// 2. As a result of the previous point, we don't make use of an input buffer to accumulate seed
|
|
|
|
/// material.
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
|
|
pub struct RpxRandomCoin {
|
|
|
|
state: [Felt; STATE_WIDTH],
|
|
|
|
current: usize,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl RpxRandomCoin {
|
|
|
|
/// Returns a new [RpxRandomCoin] initialize with the specified seed.
|
|
|
|
pub fn new(seed: Word) -> Self {
|
|
|
|
let mut state = [ZERO; STATE_WIDTH];
|
|
|
|
|
|
|
|
for i in 0..HALF_RATE_WIDTH {
|
|
|
|
state[RATE_START + i] += seed[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Absorb
|
|
|
|
Rpx256::apply_permutation(&mut state);
|
|
|
|
|
|
|
|
RpxRandomCoin { state, current: RATE_START }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns an [RpxRandomCoin] instantiated from the provided components.
|
|
|
|
///
|
|
|
|
/// # Panics
|
|
|
|
/// Panics if `current` is smaller than 4 or greater than or equal to 12.
|
|
|
|
pub fn from_parts(state: [Felt; STATE_WIDTH], current: usize) -> Self {
|
|
|
|
assert!(
|
|
|
|
(RATE_START..RATE_END).contains(¤t),
|
|
|
|
"current value outside of valid range"
|
|
|
|
);
|
|
|
|
Self { state, current }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns components of this random coin.
|
|
|
|
pub fn into_parts(self) -> ([Felt; STATE_WIDTH], usize) {
|
|
|
|
(self.state, self.current)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Fills `dest` with random data.
|
|
|
|
pub fn fill_bytes(&mut self, dest: &mut [u8]) {
|
|
|
|
<Self as RngCore>::fill_bytes(self, dest)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn draw_basefield(&mut self) -> Felt {
|
|
|
|
if self.current == RATE_END {
|
|
|
|
Rpx256::apply_permutation(&mut self.state);
|
|
|
|
self.current = RATE_START;
|
|
|
|
}
|
|
|
|
|
|
|
|
self.current += 1;
|
|
|
|
self.state[self.current - 1]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// RANDOM COIN IMPLEMENTATION
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
impl RandomCoin for RpxRandomCoin {
|
|
|
|
type BaseField = Felt;
|
|
|
|
type Hasher = Rpx256;
|
|
|
|
|
|
|
|
fn new(seed: &[Self::BaseField]) -> Self {
|
|
|
|
let digest: Word = Rpx256::hash_elements(seed).into();
|
|
|
|
Self::new(digest)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn reseed(&mut self, data: RpxDigest) {
|
|
|
|
// Reset buffer
|
|
|
|
self.current = RATE_START;
|
|
|
|
|
|
|
|
// Add the new seed material to the first half of the rate portion of the RPX state
|
|
|
|
let data: Word = data.into();
|
|
|
|
|
|
|
|
self.state[RATE_START] += data[0];
|
|
|
|
self.state[RATE_START + 1] += data[1];
|
|
|
|
self.state[RATE_START + 2] += data[2];
|
|
|
|
self.state[RATE_START + 3] += data[3];
|
|
|
|
|
|
|
|
// Absorb
|
|
|
|
Rpx256::apply_permutation(&mut self.state);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn check_leading_zeros(&self, value: u64) -> u32 {
|
|
|
|
let value = Felt::new(value);
|
|
|
|
let mut state_tmp = self.state;
|
|
|
|
|
|
|
|
state_tmp[RATE_START] += value;
|
|
|
|
|
|
|
|
Rpx256::apply_permutation(&mut state_tmp);
|
|
|
|
|
|
|
|
let first_rate_element = state_tmp[RATE_START].as_int();
|
|
|
|
first_rate_element.trailing_zeros()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn draw<E: FieldElement<BaseField = Felt>>(&mut self) -> Result<E, RandomCoinError> {
|
|
|
|
let ext_degree = E::EXTENSION_DEGREE;
|
|
|
|
let mut result = vec![ZERO; ext_degree];
|
|
|
|
for r in result.iter_mut().take(ext_degree) {
|
|
|
|
*r = self.draw_basefield();
|
|
|
|
}
|
|
|
|
|
|
|
|
let result = E::slice_from_base_elements(&result);
|
|
|
|
Ok(result[0])
|
|
|
|
}
|
|
|
|
|
|
|
|
fn draw_integers(
|
|
|
|
&mut self,
|
|
|
|
num_values: usize,
|
|
|
|
domain_size: usize,
|
|
|
|
nonce: u64,
|
|
|
|
) -> Result<Vec<usize>, RandomCoinError> {
|
|
|
|
assert!(domain_size.is_power_of_two(), "domain size must be a power of two");
|
|
|
|
assert!(num_values < domain_size, "number of values must be smaller than domain size");
|
|
|
|
|
|
|
|
// absorb the nonce
|
|
|
|
let nonce = Felt::new(nonce);
|
|
|
|
self.state[RATE_START] += nonce;
|
|
|
|
Rpx256::apply_permutation(&mut self.state);
|
|
|
|
|
|
|
|
// reset the buffer
|
|
|
|
self.current = RATE_START;
|
|
|
|
|
|
|
|
// determine how many bits are needed to represent valid values in the domain
|
|
|
|
let v_mask = (domain_size - 1) as u64;
|
|
|
|
|
|
|
|
// draw values from PRNG until we get as many unique values as specified by num_queries
|
|
|
|
let mut values = Vec::new();
|
|
|
|
for _ in 0..1000 {
|
|
|
|
// get the next pseudo-random field element
|
|
|
|
let value = self.draw_basefield().as_int();
|
|
|
|
|
|
|
|
// use the mask to get a value within the range
|
|
|
|
let value = (value & v_mask) as usize;
|
|
|
|
|
|
|
|
values.push(value);
|
|
|
|
if values.len() == num_values {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if values.len() < num_values {
|
|
|
|
return Err(RandomCoinError::FailedToDrawIntegers(num_values, values.len(), 1000));
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(values)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// FELT RNG IMPLEMENTATION
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
impl FeltRng for RpxRandomCoin {
|
|
|
|
fn draw_element(&mut self) -> Felt {
|
|
|
|
self.draw_basefield()
|
|
|
|
}
|
|
|
|
|
|
|
|
fn draw_word(&mut self) -> Word {
|
|
|
|
let mut output = [ZERO; 4];
|
|
|
|
for o in output.iter_mut() {
|
|
|
|
*o = self.draw_basefield();
|
|
|
|
}
|
|
|
|
output
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// RNGCORE IMPLEMENTATION
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
impl RngCore for RpxRandomCoin {
|
|
|
|
fn next_u32(&mut self) -> u32 {
|
|
|
|
self.draw_basefield().as_int() as u32
|
|
|
|
}
|
|
|
|
|
|
|
|
fn next_u64(&mut self) -> u64 {
|
|
|
|
impls::next_u64_via_u32(self)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn fill_bytes(&mut self, dest: &mut [u8]) {
|
|
|
|
impls::fill_bytes_via_next(self, dest)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
|
|
|
|
self.fill_bytes(dest);
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// SERIALIZATION
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
impl Serializable for RpxRandomCoin {
|
|
|
|
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
|
|
|
self.state.iter().for_each(|v| v.write_into(target));
|
|
|
|
// casting to u8 is OK because `current` is always between 4 and 12.
|
|
|
|
target.write_u8(self.current as u8);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Deserializable for RpxRandomCoin {
|
|
|
|
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
|
|
|
let state = [
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
Felt::read_from(source)?,
|
|
|
|
];
|
|
|
|
let current = source.read_u8()? as usize;
|
|
|
|
if !(RATE_START..RATE_END).contains(¤t) {
|
|
|
|
return Err(DeserializationError::InvalidValue(
|
|
|
|
"current value outside of valid range".to_string(),
|
|
|
|
));
|
|
|
|
}
|
|
|
|
Ok(Self { state, current })
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TESTS
|
|
|
|
// ================================================================================================
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use super::{Deserializable, FeltRng, RpxRandomCoin, Serializable, ZERO};
|
|
|
|
use crate::ONE;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_feltrng_felt() {
|
|
|
|
let mut rpxcoin = RpxRandomCoin::new([ZERO; 4]);
|
|
|
|
let output = rpxcoin.draw_element();
|
|
|
|
|
|
|
|
let mut rpxcoin = RpxRandomCoin::new([ZERO; 4]);
|
|
|
|
let expected = rpxcoin.draw_basefield();
|
|
|
|
|
|
|
|
assert_eq!(output, expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_feltrng_word() {
|
|
|
|
let mut rpxcoin = RpxRandomCoin::new([ZERO; 4]);
|
|
|
|
let output = rpxcoin.draw_word();
|
|
|
|
|
|
|
|
let mut rpocoin = RpxRandomCoin::new([ZERO; 4]);
|
|
|
|
let mut expected = [ZERO; 4];
|
|
|
|
for o in expected.iter_mut() {
|
|
|
|
*o = rpocoin.draw_basefield();
|
|
|
|
}
|
|
|
|
|
|
|
|
assert_eq!(output, expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_feltrng_serialization() {
|
|
|
|
let coin1 = RpxRandomCoin::from_parts([ONE; 12], 5);
|
|
|
|
|
|
|
|
let bytes = coin1.to_bytes();
|
|
|
|
let coin2 = RpxRandomCoin::read_from_bytes(&bytes).unwrap();
|
|
|
|
assert_eq!(coin1, coin2);
|
|
|
|
}
|
|
|
|
}
|