Files
miden-crypto/src/dsa/rpo_stark/signature/mod.rs

174 lines
5.7 KiB
Rust

use rand::{distributions::Uniform, prelude::Distribution, Rng};
use winter_air::{FieldExtension, ProofOptions};
use winter_math::{fields::f64::BaseElement, FieldElement};
use winter_prover::Proof;
use winter_utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
use crate::{
dsa::rpo_stark::stark::RpoSignatureScheme,
hash::{rpo::Rpo256, DIGEST_SIZE},
StarkField, Word, ZERO,
};
// CONSTANTS
// ================================================================================================
/// Specifies the parameters of the STARK underlying the signature scheme. These parameters provide
/// at least 102 bits of security under the conjectured security of the toy protocol in
/// the ethSTARK paper [1].
///
/// [1]: https://eprint.iacr.org/2021/582
pub const PROOF_OPTIONS: ProofOptions =
ProofOptions::new(30, 8, 12, FieldExtension::Quadratic, 4, 7, true);
// PUBLIC KEY
// ================================================================================================
/// A public key for verifying signatures.
///
/// The public key is a [Word] (i.e., 4 field elements) that is the hash of the secret key.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct PublicKey(Word);
impl PublicKey {
/// Returns the [Word] defining the public key.
pub fn inner(&self) -> Word {
self.0
}
}
impl PublicKey {
/// Verifies the provided signature against provided message and this public key.
pub fn verify(&self, message: Word, signature: &Signature) -> bool {
signature.verify(message, *self)
}
}
impl Serializable for PublicKey {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
self.0.write_into(target);
}
}
impl Deserializable for PublicKey {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let pk = <Word>::read_from(source)?;
Ok(Self(pk))
}
}
// SECRET KEY
// ================================================================================================
/// A secret key for generating signatures.
///
/// The secret key is a [Word] (i.e., 4 field elements).
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct SecretKey(Word);
impl SecretKey {
/// Generates a secret key from OS-provided randomness.
pub fn new(word: Word) -> Self {
Self(word)
}
/// Generates a secret key from a [Word].
#[cfg(feature = "std")]
pub fn random() -> Self {
use rand::{rngs::StdRng, SeedableRng};
let mut rng = StdRng::from_entropy();
Self::with_rng(&mut rng)
}
/// Generates a secret_key using the provided random number generator `Rng`.
pub fn with_rng<R: Rng>(rng: &mut R) -> Self {
let mut sk = [ZERO; 4];
let uni_dist = Uniform::from(0..BaseElement::MODULUS);
for s in sk.iter_mut() {
let sampled_integer = uni_dist.sample(rng);
*s = BaseElement::new(sampled_integer);
}
Self(sk)
}
/// Computes the public key corresponding to this secret key.
pub fn public_key(&self) -> PublicKey {
let mut elements = [BaseElement::ZERO; 8];
elements[..DIGEST_SIZE].copy_from_slice(&self.0);
let pk = Rpo256::hash_elements(&elements);
PublicKey(pk.into())
}
/// Signs a message with this secret key.
pub fn sign(&self, message: Word) -> Signature {
let signature: RpoSignatureScheme<Rpo256> = RpoSignatureScheme::new(PROOF_OPTIONS);
let proof = signature.sign(self.0, message);
Signature { proof }
}
}
impl Serializable for SecretKey {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
self.0.write_into(target);
}
}
impl Deserializable for SecretKey {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let sk = <Word>::read_from(source)?;
Ok(Self(sk))
}
}
// SIGNATURE
// ================================================================================================
/// An RPO STARK-based signature over a message.
///
/// The signature is a STARK proof of knowledge of a pre-image given an image where the map is
/// the RPO permutation, the pre-image is the secret key and the image is the public key.
/// The current implementation follows the description in [1] but relies on the conjectured security
/// of the toy protocol in the ethSTARK paper [2], which gives us using the parameter set
/// given in `PROOF_OPTIONS` a signature with $102$ bits of average-case existential unforgeability
/// security against $2^{113}$-query bound adversaries that can obtain up to $2^{64}$ signatures
/// under the same public key.
///
/// [1]: https://eprint.iacr.org/2024/1553
/// [2]: https://eprint.iacr.org/2021/582
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Signature {
proof: Proof,
}
impl Signature {
/// Returns the STARK proof constituting the signature.
pub fn inner(&self) -> Proof {
self.proof.clone()
}
/// Returns true if this signature is a valid signature for the specified message generated
/// against the secret key matching the specified public key.
pub fn verify(&self, message: Word, pk: PublicKey) -> bool {
let signature: RpoSignatureScheme<Rpo256> = RpoSignatureScheme::new(PROOF_OPTIONS);
let res = signature.verify(pk.inner(), message, self.proof.clone());
res.is_ok()
}
}
impl Serializable for Signature {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
self.proof.write_into(target);
}
}
impl Deserializable for Signature {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let proof = Proof::read_from(source)?;
Ok(Self { proof })
}
}