You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

495 lines
16 KiB

  1. // use ark_ec::AffineRepr;
  2. use ark_ec::{CurveGroup, Group};
  3. use ark_ff::fields::PrimeField;
  4. use ark_std::{One, Zero};
  5. use std::marker::PhantomData;
  6. use crate::pedersen::{Commitment, Params as PedersenParams, Pedersen, Proof as PedersenProof};
  7. use crate::transcript::Transcript;
  8. use crate::utils::*;
  9. use ark_crypto_primitives::sponge::Absorb;
  10. pub struct R1CS<F: PrimeField> {
  11. pub A: Vec<Vec<F>>,
  12. pub B: Vec<Vec<F>>,
  13. pub C: Vec<Vec<F>>,
  14. }
  15. // Phi: φ in the paper (later 𝖴), a folded instance
  16. #[derive(Clone, Debug)]
  17. pub struct Phi<C: CurveGroup> {
  18. pub cmE: Commitment<C>,
  19. pub u: C::ScalarField,
  20. pub cmW: Commitment<C>,
  21. pub x: C::ScalarField,
  22. }
  23. // FWit: Folded Witness
  24. pub struct FWit<C: CurveGroup> {
  25. pub E: Vec<C::ScalarField>,
  26. pub rE: C::ScalarField,
  27. pub W: Vec<C::ScalarField>,
  28. pub rW: C::ScalarField,
  29. }
  30. impl<C: CurveGroup> FWit<C>
  31. where
  32. <C as Group>::ScalarField: Absorb,
  33. <C as CurveGroup>::BaseField: Absorb,
  34. {
  35. pub fn new(z: Vec<C::ScalarField>, e_len: usize) -> Self {
  36. FWit::<C> {
  37. E: vec![C::ScalarField::zero(); e_len],
  38. rE: C::ScalarField::one(),
  39. W: z,
  40. rW: C::ScalarField::one(),
  41. }
  42. }
  43. pub fn commit(&self, params: &PedersenParams<C>) -> Phi<C> {
  44. let cmE = Pedersen::commit(params, &self.E, &self.rE);
  45. let cmW = Pedersen::commit(params, &self.W, &self.rW);
  46. Phi {
  47. cmE,
  48. u: C::ScalarField::one(),
  49. cmW,
  50. x: self.W[0], // TODO WIP review
  51. }
  52. }
  53. }
  54. pub struct NIFS<C: CurveGroup> {
  55. _phantom: PhantomData<C>,
  56. }
  57. impl<C: CurveGroup> NIFS<C>
  58. where
  59. <C as Group>::ScalarField: Absorb,
  60. <C as CurveGroup>::BaseField: Absorb,
  61. {
  62. // comp_T: compute cross-terms T
  63. pub fn comp_T(
  64. r1cs: &R1CS<C::ScalarField>,
  65. u1: C::ScalarField,
  66. u2: C::ScalarField,
  67. z1: &[C::ScalarField],
  68. z2: &[C::ScalarField],
  69. ) -> Vec<C::ScalarField> {
  70. let (A, B, C) = (r1cs.A.clone(), r1cs.B.clone(), r1cs.C.clone());
  71. // this is parallelizable (for the future)
  72. let Az1 = matrix_vector_product(&A, z1);
  73. let Bz1 = matrix_vector_product(&B, z1);
  74. let Cz1 = matrix_vector_product(&C, z1);
  75. let Az2 = matrix_vector_product(&A, z2);
  76. let Bz2 = matrix_vector_product(&B, z2);
  77. let Cz2 = matrix_vector_product(&C, z2);
  78. let Az1_Bz2 = hadamard_product(Az1, Bz2);
  79. let Az2_Bz1 = hadamard_product(Az2, Bz1);
  80. let u1Cz2 = vector_elem_product(&Cz2, &u1);
  81. let u2Cz1 = vector_elem_product(&Cz1, &u2);
  82. // let T = vec_sub(vec_sub(vec_add(Az1_Bz2, Az2_Bz1), u1Cz2), u2Cz1);
  83. let T = ((Ve(Az1_Bz2) + Ve(Az2_Bz1)) - Ve(u1Cz2)) - Ve(u2Cz1);
  84. T.0
  85. }
  86. pub fn fold_witness(
  87. r: C::ScalarField,
  88. fw1: &FWit<C>,
  89. fw2: &FWit<C>,
  90. T: &Vec<C::ScalarField>,
  91. rT: C::ScalarField,
  92. ) -> FWit<C> {
  93. let r2 = r * r;
  94. let E: Vec<C::ScalarField> = vec_add(
  95. // this syntax will be simplified with future operators impl (or at least a method
  96. // for r-lin)
  97. &vec_add(&fw1.E, &vector_elem_product(T, &r)),
  98. &vector_elem_product(&fw2.E, &r2),
  99. );
  100. let rE = fw1.rE + r * rT + r2 * fw2.rE;
  101. let W = vec_add(&fw1.W, &vector_elem_product(&fw2.W, &r));
  102. let rW = fw1.rW + r * fw2.rW;
  103. FWit::<C> { E, rE, W, rW }
  104. }
  105. pub fn fold_instance(
  106. r: C::ScalarField,
  107. phi1: &Phi<C>,
  108. phi2: &Phi<C>,
  109. cmT: &Commitment<C>,
  110. ) -> Phi<C> {
  111. let r2 = r * r;
  112. let cmE = phi1.cmE.0 + cmT.0.mul(r) + phi2.cmE.0.mul(r2);
  113. let u = phi1.u + r * phi2.u;
  114. let cmW = phi1.cmW.0 + phi2.cmW.0.mul(r);
  115. // let x = vec_add(&phi1.x, &vector_elem_product(&phi2.x, &r));
  116. let x = phi1.x + r * phi2.x;
  117. Phi::<C> {
  118. cmE: Commitment(cmE),
  119. u,
  120. cmW: Commitment(cmW),
  121. x,
  122. }
  123. }
  124. // NIFS.P
  125. #[allow(clippy::type_complexity)]
  126. pub fn P(
  127. tr: &mut Transcript<C::ScalarField, C>,
  128. pedersen_params: &PedersenParams<C>,
  129. r: C::ScalarField,
  130. r1cs: &R1CS<C::ScalarField>,
  131. fw1: FWit<C>,
  132. fw2: FWit<C>,
  133. ) -> (FWit<C>, Phi<C>, Phi<C>, Vec<C::ScalarField>, Commitment<C>) {
  134. // compute committed instances
  135. let phi1 = fw1.commit(pedersen_params); // wip
  136. let phi2 = fw2.commit(pedersen_params);
  137. // compute cross terms
  138. let T = Self::comp_T(r1cs, phi1.u, phi2.u, &fw1.W, &fw2.W);
  139. let rT = tr.get_challenge(); // r_T
  140. let cmT = Pedersen::commit(pedersen_params, &T, &rT);
  141. // fold witness
  142. let fw3 = NIFS::<C>::fold_witness(r, &fw1, &fw2, &T, rT);
  143. // fold committed instancs
  144. // let phi3 = NIFS::<C>::fold_instance(r, &phi1, &phi2, &cmT);
  145. (fw3, phi1, phi2, T, cmT) // maybe return phi3
  146. }
  147. // NIFS.V
  148. pub fn V(r: C::ScalarField, phi1: &Phi<C>, phi2: &Phi<C>, cmT: &Commitment<C>) -> Phi<C> {
  149. NIFS::<C>::fold_instance(r, phi1, phi2, cmT)
  150. }
  151. // verify commited folded instance (phi) relations
  152. pub fn verify(
  153. r: C::ScalarField,
  154. phi1: &Phi<C>,
  155. phi2: &Phi<C>,
  156. phi3: &Phi<C>,
  157. cmT: &Commitment<C>,
  158. ) -> bool {
  159. let r2 = r * r;
  160. if phi3.cmE.0 != (phi1.cmE.0 + cmT.0.mul(r) + phi2.cmE.0.mul(r2)) {
  161. return false;
  162. }
  163. if phi3.u != phi1.u + r * phi2.u {
  164. return false;
  165. }
  166. if phi3.cmW.0 != (phi1.cmW.0 + phi2.cmW.0.mul(r)) {
  167. return false;
  168. }
  169. // if phi3.x != vec_add(&phi1.x, &vector_elem_product(&phi2.x, &r)) {
  170. if phi3.x != phi1.x + r * phi2.x {
  171. return false;
  172. }
  173. true
  174. }
  175. pub fn open_commitments(
  176. tr: &mut Transcript<C::ScalarField, C>,
  177. pedersen_params: &PedersenParams<C>,
  178. fw: &FWit<C>,
  179. phi: &Phi<C>,
  180. T: Vec<C::ScalarField>,
  181. rT: C::ScalarField,
  182. cmT: &Commitment<C>,
  183. ) -> (PedersenProof<C>, PedersenProof<C>, PedersenProof<C>) {
  184. let cmE_proof = Pedersen::prove(pedersen_params, tr, &phi.cmE, &fw.E, &fw.rE);
  185. let cmW_proof = Pedersen::prove(pedersen_params, tr, &phi.cmW, &fw.W, &fw.rW);
  186. let cmT_proof = Pedersen::prove(pedersen_params, tr, cmT, &T, &rT);
  187. (cmE_proof, cmW_proof, cmT_proof)
  188. }
  189. pub fn verify_commitments(
  190. tr: &mut Transcript<C::ScalarField, C>,
  191. pedersen_params: &PedersenParams<C>,
  192. phi: Phi<C>,
  193. cmT: Commitment<C>,
  194. cmE_proof: PedersenProof<C>,
  195. cmW_proof: PedersenProof<C>,
  196. cmT_proof: PedersenProof<C>,
  197. ) -> bool {
  198. if !Pedersen::verify(pedersen_params, tr, phi.cmE, cmE_proof) {
  199. return false;
  200. }
  201. if !Pedersen::verify(pedersen_params, tr, phi.cmW, cmW_proof) {
  202. return false;
  203. }
  204. if !Pedersen::verify(pedersen_params, tr, cmT, cmT_proof) {
  205. return false;
  206. }
  207. true
  208. }
  209. }
  210. // only for tests across different files
  211. pub fn gen_test_values<F: PrimeField>(n: usize) -> (R1CS<F>, Vec<Vec<F>>, Vec<Vec<F>>) {
  212. // R1CS for: x^3 + x + 5 = y (example from article
  213. // https://www.vitalik.ca/general/2016/12/10/qap.html )
  214. let A = to_F_matrix::<F>(vec![
  215. vec![0, 1, 0, 0, 0, 0],
  216. vec![0, 0, 0, 1, 0, 0],
  217. vec![0, 1, 0, 0, 1, 0],
  218. vec![5, 0, 0, 0, 0, 1],
  219. ]);
  220. let B = to_F_matrix::<F>(vec![
  221. vec![0, 1, 0, 0, 0, 0],
  222. vec![0, 1, 0, 0, 0, 0],
  223. vec![1, 0, 0, 0, 0, 0],
  224. vec![1, 0, 0, 0, 0, 0],
  225. ]);
  226. let C = to_F_matrix::<F>(vec![
  227. vec![0, 0, 0, 1, 0, 0],
  228. vec![0, 0, 0, 0, 1, 0],
  229. vec![0, 0, 0, 0, 0, 1],
  230. vec![0, 0, 1, 0, 0, 0],
  231. ]);
  232. // generate n witnesses
  233. let mut w: Vec<Vec<F>> = Vec::new();
  234. let mut x: Vec<Vec<F>> = Vec::new();
  235. for i in 0..n {
  236. let input = 3 + i;
  237. let w_i = to_F_vec::<F>(vec![
  238. 1,
  239. input,
  240. input * input * input + input + 5, // x^3 + x + 5
  241. input * input, // x^2
  242. input * input * input, // x^2 * x
  243. input * input * input + input, // x^3 + x
  244. ]);
  245. w.push(w_i.clone());
  246. let x_i = to_F_vec::<F>(vec![input * input * input + input + 5]);
  247. x.push(x_i.clone());
  248. }
  249. let r1cs = R1CS::<F> { A, B, C };
  250. (r1cs, w, x)
  251. }
  252. #[cfg(test)]
  253. mod tests {
  254. use super::*;
  255. use crate::pedersen::Pedersen;
  256. use crate::transcript::poseidon_test_config;
  257. use ark_mnt4_298::{Fr, G1Projective};
  258. use ark_std::One;
  259. use ark_std::UniformRand;
  260. // fold 2 instances into one
  261. #[test]
  262. fn test_one_fold() {
  263. let mut rng = ark_std::test_rng();
  264. let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec
  265. let poseidon_config = poseidon_test_config::<Fr>();
  266. let (r1cs, ws, _) = gen_test_values(2);
  267. let (A, B, C) = (r1cs.A.clone(), r1cs.B.clone(), r1cs.C.clone());
  268. let r = Fr::rand(&mut rng); // this would come from the transcript
  269. let fw1 = FWit::<G1Projective>::new(ws[0].clone(), A.len());
  270. let fw2 = FWit::<G1Projective>::new(ws[1].clone(), A.len());
  271. // get committed instances
  272. let phi1 = fw1.commit(&pedersen_params); // wip
  273. let phi2 = fw2.commit(&pedersen_params);
  274. let T = NIFS::<G1Projective>::comp_T(&r1cs, phi1.u, phi2.u, &ws[0], &ws[1]);
  275. let rT: Fr = Fr::rand(&mut rng);
  276. let cmT = Pedersen::commit(&pedersen_params, &T, &rT);
  277. // fold witness
  278. let fw3 = NIFS::<G1Projective>::fold_witness(r, &fw1, &fw2, &T, rT);
  279. // fold instance
  280. let phi3 = NIFS::<G1Projective>::fold_instance(r, &phi1, &phi2, &cmT);
  281. // naive check that the folded witness satisfies the relaxed r1cs
  282. let Az = matrix_vector_product(&A, &fw3.W);
  283. let Bz = matrix_vector_product(&B, &fw3.W);
  284. let Cz = matrix_vector_product(&C, &fw3.W);
  285. assert_eq!(
  286. hadamard_product(Az, Bz),
  287. vec_add(&vector_elem_product(&Cz, &phi3.u), &fw3.E)
  288. );
  289. // check that folded commitments from folded instance (phi) are equal to folding the
  290. // use folded rE, rW to commit fw3
  291. let phi3_expected = fw3.commit(&pedersen_params);
  292. assert_eq!(phi3_expected.cmE.0, phi3.cmE.0);
  293. assert_eq!(phi3_expected.cmW.0, phi3.cmW.0);
  294. // NIFS.Verify:
  295. assert!(NIFS::<G1Projective>::verify(r, &phi1, &phi2, &phi3, &cmT));
  296. // init Prover's transcript
  297. let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
  298. // init Verifier's transcript
  299. let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
  300. // check openings of phi3.cmE, phi3.cmW and cmT
  301. let (cmE_proof, cmW_proof, cmT_proof) = NIFS::<G1Projective>::open_commitments(
  302. &mut transcript_p,
  303. &pedersen_params,
  304. &fw3,
  305. &phi3,
  306. T,
  307. rT,
  308. &cmT,
  309. );
  310. let v = NIFS::<G1Projective>::verify_commitments(
  311. &mut transcript_v,
  312. &pedersen_params,
  313. phi3,
  314. cmT,
  315. cmE_proof,
  316. cmW_proof,
  317. cmT_proof,
  318. );
  319. assert!(v);
  320. }
  321. // fold i_1, i_2 instances into i_12, and then i_12, i_3 into i_123
  322. #[test]
  323. fn test_two_fold() {
  324. let mut rng = ark_std::test_rng();
  325. let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 6);
  326. let poseidon_config = poseidon_test_config::<Fr>();
  327. let (r1cs, ws, _) = gen_test_values(3);
  328. let u1: Fr = Fr::one();
  329. let u2: Fr = Fr::one();
  330. let T_12 = NIFS::<G1Projective>::comp_T(&r1cs, u1, u2, &ws[0], &ws[1]);
  331. let rT_12: Fr = Fr::rand(&mut rng);
  332. let cmT_12 = Pedersen::commit(&pedersen_params, &T_12, &rT_12);
  333. let r = Fr::rand(&mut rng); // this would come from the transcript
  334. let fw1 = FWit::<G1Projective>::new(ws[0].clone(), T_12.len());
  335. let fw2 = FWit::<G1Projective>::new(ws[1].clone(), T_12.len());
  336. // fold witness
  337. let fw_12 = NIFS::<G1Projective>::fold_witness(r, &fw1, &fw2, &T_12, rT_12);
  338. // get committed instances
  339. let phi1 = fw1.commit(&pedersen_params); // wip
  340. let phi2 = fw2.commit(&pedersen_params);
  341. // fold instance
  342. let phi_12 = NIFS::<G1Projective>::fold_instance(r, &phi1, &phi2, &cmT_12);
  343. // NIFS.Verify:
  344. assert!(NIFS::<G1Projective>::verify(
  345. r, &phi1, &phi2, &phi_12, &cmT_12
  346. ));
  347. //----
  348. // 2nd fold
  349. let fw3 = FWit::<G1Projective>::new(ws[2].clone(), r1cs.A.len());
  350. // compute cross terms
  351. let T_123 = NIFS::<G1Projective>::comp_T(&r1cs, phi_12.u, Fr::one(), &fw_12.W, &fw3.W);
  352. let rT_123: Fr = Fr::rand(&mut rng);
  353. let cmT_123 = Pedersen::commit(&pedersen_params, &T_123, &rT_123);
  354. // V sets rand challenge r
  355. let r = Fr::rand(&mut rng); // this would come from the transcript
  356. // fold witness
  357. let fw_123 = NIFS::<G1Projective>::fold_witness(r, &fw_12, &fw3, &T_123, rT_123);
  358. // get committed instances
  359. // phi_12 is already known for Verifier from folding phi1, phi2
  360. // rm: let phi_12 = fw_12.commit(&pedersen_params); // wip
  361. let phi3 = fw3.commit(&pedersen_params);
  362. // fold instance
  363. let phi_123 = NIFS::<G1Projective>::fold_instance(r, &phi_12, &phi3, &cmT_123);
  364. // NIFS.Verify:
  365. assert!(NIFS::<G1Projective>::verify(
  366. r, &phi_12, &phi3, &phi_123, &cmT_123
  367. ));
  368. // naive check that the folded witness satisfies the relaxed r1cs
  369. let Az = matrix_vector_product(&r1cs.A, &fw_123.W);
  370. let Bz = matrix_vector_product(&r1cs.B, &fw_123.W);
  371. let Cz = matrix_vector_product(&r1cs.C, &fw_123.W);
  372. assert_eq!(
  373. hadamard_product(Az, Bz),
  374. vec_add(&vector_elem_product(&Cz, &phi_123.u), &fw_123.E)
  375. );
  376. // check that folded commitments from folded instance (phi) are equal to folding the
  377. // use folded rE, rW to commit fw3
  378. let phi_123_expected = fw_123.commit(&pedersen_params);
  379. assert_eq!(phi_123_expected.cmE.0, phi_123.cmE.0);
  380. assert_eq!(phi_123_expected.cmW.0, phi_123.cmW.0);
  381. // init Prover's transcript
  382. let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
  383. // init Verifier's transcript
  384. let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
  385. // check openings of phi_123.cmE, phi_123.cmW and cmT_123
  386. let (cmE_proof, cmW_proof, cmT_proof) = NIFS::<G1Projective>::open_commitments(
  387. &mut transcript_p,
  388. &pedersen_params,
  389. &fw_123,
  390. &phi_123,
  391. T_123,
  392. rT_123,
  393. &cmT_123,
  394. );
  395. let v = NIFS::<G1Projective>::verify_commitments(
  396. &mut transcript_v,
  397. &pedersen_params,
  398. phi_123,
  399. cmT_123,
  400. cmE_proof,
  401. cmW_proof,
  402. cmT_proof,
  403. );
  404. assert!(v);
  405. }
  406. #[test]
  407. fn test_nifs_interface() {
  408. let mut rng = ark_std::test_rng();
  409. let pedersen_params = Pedersen::<G1Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec
  410. let poseidon_config = poseidon_test_config::<Fr>();
  411. let (r1cs, ws, _) = gen_test_values(3);
  412. let (A, _, _) = (r1cs.A.clone(), r1cs.B.clone(), r1cs.C.clone());
  413. let r = Fr::rand(&mut rng); // this would come from the transcript
  414. let fw1 = FWit::<G1Projective>::new(ws[0].clone(), A.len());
  415. let fw2 = FWit::<G1Projective>::new(ws[1].clone(), A.len());
  416. // init Prover's transcript
  417. let mut transcript_p = Transcript::<Fr, G1Projective>::new(&poseidon_config);
  418. // NIFS.P
  419. let (_fw3, phi1, phi2, _T, cmT) =
  420. NIFS::<G1Projective>::P(&mut transcript_p, &pedersen_params, r, &r1cs, fw1, fw2);
  421. // init Verifier's transcript
  422. // let mut transcript_v = Transcript::<Fr, G1Projective>::new(&poseidon_config);
  423. // NIFS.V
  424. let phi3 = NIFS::<G1Projective>::V(r, &phi1, &phi2, &cmT);
  425. assert!(NIFS::<G1Projective>::verify(r, &phi1, &phi2, &phi3, &cmT));
  426. }
  427. }