add compute T, start test of simple folding

This commit is contained in:
2023-04-19 00:56:59 +02:00
parent 050110a4dc
commit 5a43ecd268
4 changed files with 187 additions and 41 deletions

View File

@@ -2,16 +2,16 @@ use ark_ec::AffineRepr;
use ark_std::ops::Add;
use std::marker::PhantomData;
use crate::pedersen::Commitment;
use crate::pedersen::{Commitment, CommitmentVec};
use crate::r1cs::*;
use crate::transcript::Transcript;
use crate::utils::*;
// Phi: φ in the paper (later 𝖴), a folded instance
pub struct Phi<C: AffineRepr> {
cmE: Commitment<C>,
cmE: Commitment<C>, // TODO not Commitment but directly C (without rE)
u: C::ScalarField,
cmW: Commitment<C>,
cmW: Commitment<C>, // TODO not Commitment but directly C (without rW)
x: Vec<C::ScalarField>,
}
@@ -23,25 +23,56 @@ pub struct FWit<C: AffineRepr> {
rW: C::ScalarField,
}
impl<C: AffineRepr> FWit<C> {
pub fn commit(&self) -> Phi<C> {
unimplemented!();
}
}
pub struct NIFS<C: AffineRepr> {
_phantom: PhantomData<C>,
}
impl<C: AffineRepr> NIFS<C> {
pub fn comp_T(
cs1: RelaxedR1CS<C::ScalarField>,
cs2: RelaxedR1CS<C::ScalarField>,
z1: &Vec<C::ScalarField>,
z2: &Vec<C::ScalarField>,
) -> Vec<C::ScalarField> {
// assuming cs1.R1CS == cs2.R1CS
let (A, B, C) = (cs1.ABC.A, cs1.ABC.B, cs1.ABC.C);
// this is parallelizable (for the future)
let Az1 = matrix_vector_product(&A, &z1);
let Bz1 = matrix_vector_product(&B, &z1);
let Az1_Bz1 = hadamard_product(Az1, Bz1);
let Az2 = matrix_vector_product(&A, &z2);
let Bz2 = matrix_vector_product(&B, &z2);
let Az2_Bz2 = hadamard_product(Az2, Bz2);
let Cz2 = matrix_vector_product(&C, &z2);
let Cz1 = matrix_vector_product(&C, &z1);
let u1Cz2 = vector_elem_product(&Cz2, &cs1.u);
let u2Cz1 = vector_elem_product(&Cz1, &cs2.u);
// this will get simplifyied with future operators from Add trait
let T = vec_sub(vec_sub(vec_add(Az1_Bz1, Az2_Bz2), u1Cz2), u2Cz1);
T
}
pub fn fold_witness(
r: C::ScalarField,
fw1: FWit<C>,
fw2: FWit<C>,
fw1: &FWit<C>,
fw2: &FWit<C>,
T: Vec<C::ScalarField>,
) -> FWit<C> {
let r2 = r * r;
let E: Vec<C::ScalarField> = vec_add(
// TODO this syntax will be simplified with future operators impl
vec_add(fw1.E, vector_elem_product(&T, &r)),
vec_add(fw1.E.clone(), vector_elem_product(&T, &r)),
vector_elem_product(&fw2.E, &r2),
);
let rE = fw1.rE + r * fw2.rE;
let W = vec_add(fw1.W, vector_elem_product(&fw2.W, &r));
let W = vec_add(fw1.W.clone(), vector_elem_product(&fw2.W, &r));
let rW = fw1.rW + r * fw2.rW;
FWit::<C> {
E: E.into(),
@@ -55,7 +86,7 @@ impl<C: AffineRepr> NIFS<C> {
r: C::ScalarField,
phi1: Phi<C>,
phi2: Phi<C>,
cmT: Commitment<C>,
cmT: CommitmentVec<C>,
) -> Phi<C> {
let r2 = r * r;
@@ -78,3 +109,81 @@ impl<C: AffineRepr> NIFS<C> {
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::pedersen::Pedersen;
use ark_bn254::{g1::G1Affine, Fr};
use ark_ec::CurveGroup;
use ark_std::{
rand::{Rng, RngCore},
UniformRand,
};
use ark_std::{One, Zero};
use std::ops::Mul;
#[test]
fn test_simple_folding() {
let mut rng = ark_std::test_rng();
// R1CS for: x^3 + x + 5 = y
let A = to_F_matrix::<Fr>(vec![
vec![0, 1, 0, 0, 0, 0],
vec![0, 0, 0, 1, 0, 0],
vec![0, 1, 0, 0, 1, 0],
vec![5, 0, 0, 0, 0, 1],
]);
let B = to_F_matrix::<Fr>(vec![
vec![0, 1, 0, 0, 0, 0],
vec![0, 1, 0, 0, 0, 0],
vec![1, 0, 0, 0, 0, 0],
vec![1, 0, 0, 0, 0, 0],
]);
let C = to_F_matrix::<Fr>(vec![
vec![0, 0, 0, 1, 0, 0],
vec![0, 0, 0, 0, 1, 0],
vec![0, 0, 0, 0, 0, 1],
vec![0, 0, 1, 0, 0, 0],
]);
let z1 = to_F_vec::<Fr>(vec![1, 3, 35, 9, 27, 30]);
let z2 = to_F_vec::<Fr>(vec![1, 4, 73, 16, 64, 68]);
let relaxed_r1cs_1 = R1CS::<Fr> {
A: A.clone(),
B: B.clone(),
C: C.clone(),
}
.relax();
let relaxed_r1cs_2 = R1CS::<Fr> { A, B, C }.relax();
let T = NIFS::<G1Affine>::comp_T(relaxed_r1cs_1, relaxed_r1cs_2, &z1, &z2);
let params = Pedersen::<G1Affine>::new_params(&mut rng);
let cmT = Pedersen::commit_vec(&mut rng, &params, &T);
let r = Fr::rand(&mut rng); // this would come from the transcript
// WIP TMP
let fw1 = FWit::<G1Affine> {
E: vec![Fr::zero(); T.len()],
rE: Fr::zero(),
W: z1,
rW: Fr::zero(),
};
let fw2 = FWit::<G1Affine> {
E: vec![Fr::zero(); T.len()],
rE: Fr::zero(),
W: z2,
rW: Fr::zero(),
};
// fold witness
let folded_witness = NIFS::<G1Affine>::fold_witness(r, &fw1, &fw2, T);
let phi1 = fw1.commit(); // <- unimplemented
let phi2 = fw2.commit();
// fold instance
let folded_instance = NIFS::<G1Affine>::fold_instance(r, phi1, phi2, cmT);
// naive check r1cs of the folded witness
// assert_eq!(hadamard_product(Az, Bz), vec_add(vector_elem_product(Cz, u), E));
}
}

View File

@@ -1,8 +1,12 @@
use ark_ec::AffineRepr;
use ark_std::{rand::RngCore, UniformRand};
use ark_std::{
rand::{Rng, RngCore},
UniformRand,
};
use std::marker::PhantomData;
use crate::transcript::Transcript;
use crate::utils::naive_msm;
pub struct Proof<C: AffineRepr> {
R: C,
@@ -20,15 +24,35 @@ pub struct Pedersen<C: AffineRepr> {
}
impl<C: AffineRepr> Pedersen<C> {
pub fn commit<R: RngCore>(
pub fn new_params<R: Rng>(rng: &mut R) -> Params<C> {
let h_scalar = C::ScalarField::rand(rng);
let g: C = C::generator();
let params: Params<C> = Params::<C> {
g,
h: g.mul(h_scalar).into(),
};
params
}
pub fn commit_elem<R: RngCore>(
rng: &mut R,
params: &Params<C>,
v: &C::ScalarField,
) -> (C, C::ScalarField) {
) -> Commitment<C> {
let r = C::ScalarField::rand(rng);
let cm: C = (params.g.mul(v) + params.h.mul(r)).into();
(cm, r)
Commitment::<C> { cm, r }
}
pub fn commit_vec<R: RngCore>(
rng: &mut R,
params: &Params<C>,
v: &Vec<C::ScalarField>,
) -> CommitmentVec<C> {
let r: Vec<C> = vec![C::rand(rng); v.len()]; // wip
let cm = naive_msm(v, &r);
CommitmentVec::<C> { cm, r }
}
pub fn prove(
params: &Params<C>,
transcript: &mut Transcript<C::ScalarField>,
@@ -73,13 +97,18 @@ impl<C: AffineRepr> Pedersen<C> {
}
}
pub struct CommitmentVec<C: AffineRepr> {
// WIP
pub cm: C,
pub r: Vec<C>,
}
pub struct Commitment<C: AffineRepr> {
pub cm: C,
pub r: C::ScalarField,
}
impl<C: AffineRepr> Commitment<C> {
pub fn prove(
self,
&self,
params: &Params<C>,
transcript: &mut Transcript<C::ScalarField>,
v: C::ScalarField,
@@ -100,12 +129,7 @@ mod tests {
let mut rng = ark_std::test_rng();
// setup params
let h_scalar = Fr::rand(&mut rng);
let g: G1Affine = G1Affine::generator();
let params: Params<G1Affine> = Params::<G1Affine> {
g,
h: g.mul(h_scalar).into_affine(),
};
let params = Pedersen::<G1Affine>::new_params(&mut rng);
// init Prover's transcript
let mut transcript_p: Transcript<Fr> = Transcript::<Fr>::new();
@@ -114,9 +138,11 @@ mod tests {
let v = Fr::rand(&mut rng);
let (cm, r) = Pedersen::commit(&mut rng, &params, &v);
let proof = Pedersen::prove(&params, &mut transcript_p, cm, v, r);
let v = Pedersen::verify(&params, &mut transcript_v, cm, proof);
let cm = Pedersen::commit_elem(&mut rng, &params, &v);
let proof = cm.prove(&params, &mut transcript_p, v);
// also can use:
// let proof = Pedersen::prove(&params, &mut transcript_p, cm.cm, v, cm.r);
let v = Pedersen::verify(&params, &mut transcript_v, cm.cm, proof);
assert!(v);
}
}

View File

@@ -1,3 +1,4 @@
use ark_ec::AffineRepr;
use ark_ff::fields::PrimeField;
use core::ops::Add;
@@ -29,6 +30,16 @@ pub fn hadamard_product<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
r
}
pub fn naive_msm<C: AffineRepr>(s: &Vec<C::ScalarField>, p: &Vec<C>) -> C {
// check lengths
let mut r = p[0].mul(s[0]);
for i in 1..s.len() {
r = p[i].mul(s[i]);
}
r.into()
}
pub fn vec_add<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
let mut r: Vec<F> = vec![F::zero(); a.len()];
for i in 0..a.len() {
@@ -55,6 +66,24 @@ pub fn vec_sub<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
r
}
pub fn to_F_matrix<F: PrimeField>(M: Vec<Vec<usize>>) -> Vec<Vec<F>> {
let mut R: Vec<Vec<F>> = vec![Vec::new(); M.len()];
for i in 0..M.len() {
R[i] = vec![F::zero(); M[i].len()];
for j in 0..M[i].len() {
R[i][j] = F::from(M[i][j] as u64);
}
}
R
}
pub fn to_F_vec<F: PrimeField>(z: Vec<usize>) -> Vec<F> {
let mut r: Vec<F> = vec![F::zero(); z.len()];
for i in 0..z.len() {
r[i] = F::from(z[i] as u64);
}
r
}
#[cfg(test)]
mod tests {
use super::*;
@@ -63,24 +92,6 @@ mod tests {
use ark_std::{One, Zero};
use std::ops::Mul;
fn to_F_matrix<F: PrimeField>(M: Vec<Vec<usize>>) -> Vec<Vec<F>> {
let mut R: Vec<Vec<F>> = vec![Vec::new(); M.len()];
for i in 0..M.len() {
R[i] = vec![F::zero(); M[i].len()];
for j in 0..M[i].len() {
R[i][j] = F::from(M[i][j] as u64);
}
}
R
}
fn to_F_vec<F: PrimeField>(z: Vec<usize>) -> Vec<F> {
let mut r: Vec<F> = vec![F::zero(); z.len()];
for i in 0..z.len() {
r[i] = F::from(z[i] as u64);
}
r
}
#[test]
fn test_matrix_vector_product() {
let A = to_F_matrix::<Fr>(vec![