mirror of
https://github.com/arnaucube/nova-study.git
synced 2026-01-08 23:21:30 +01:00
hypernova-study: start multifolding scheme
This commit is contained in:
5
src/hypernova/README.md
Normal file
5
src/hypernova/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
### hypernova-study
|
||||
|
||||
https://eprint.iacr.org/2023/573.pdf
|
||||
|
||||
> Warning: Implementation just to learn the internals of HyperNova. Do not use.
|
||||
@@ -4,14 +4,14 @@ use crate::nifs::R1CS;
|
||||
use crate::utils::{hadamard_product, matrix_vector_product, vec_add, vector_elem_product};
|
||||
|
||||
pub struct CCS<F: PrimeField> {
|
||||
m: usize,
|
||||
n: usize,
|
||||
t: usize,
|
||||
q: usize,
|
||||
d: usize,
|
||||
S: Vec<Vec<usize>>,
|
||||
c: Vec<F>,
|
||||
M: Vec<Vec<Vec<F>>>,
|
||||
pub m: usize,
|
||||
pub n: usize,
|
||||
pub t: usize,
|
||||
pub q: usize,
|
||||
pub d: usize,
|
||||
pub S: Vec<Vec<usize>>,
|
||||
pub c: Vec<F>,
|
||||
pub M: Vec<Vec<Vec<F>>>,
|
||||
}
|
||||
|
||||
impl<F: PrimeField> R1CS<F> {
|
||||
|
||||
@@ -1 +1,3 @@
|
||||
pub mod ccs;
|
||||
pub mod multifolding;
|
||||
pub mod sumcheck;
|
||||
|
||||
198
src/hypernova/multifolding.rs
Normal file
198
src/hypernova/multifolding.rs
Normal file
@@ -0,0 +1,198 @@
|
||||
use ark_crypto_primitives::sponge::{poseidon::PoseidonConfig, Absorb};
|
||||
use ark_ec::{CurveGroup, Group};
|
||||
use ark_ff::fields::PrimeField;
|
||||
use ark_poly::{
|
||||
evaluations::multivariate::multilinear::{MultilinearExtension, SparseMultilinearExtension},
|
||||
multivariate::{SparsePolynomial, SparseTerm, Term},
|
||||
univariate::DensePolynomial,
|
||||
DenseMVPolynomial, DenseUVPolynomial, Polynomial,
|
||||
};
|
||||
use ark_std::log2;
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use crate::hypernova::ccs::CCS;
|
||||
use crate::hypernova::sumcheck::{Point, SumCheck};
|
||||
use crate::pedersen::Commitment;
|
||||
use crate::transcript::Transcript;
|
||||
|
||||
use ark_std::{One, Zero};
|
||||
|
||||
// Committed CCS instance
|
||||
pub struct CCCS<C: CurveGroup> {
|
||||
C: Commitment<C>,
|
||||
x: Vec<C::ScalarField>,
|
||||
}
|
||||
|
||||
// Linearized Committed CCS instance
|
||||
pub struct LCCCS<C: CurveGroup> {
|
||||
C: Commitment<C>,
|
||||
u: C::ScalarField,
|
||||
x: Vec<C::ScalarField>,
|
||||
r: Vec<C::ScalarField>,
|
||||
v: Vec<C::ScalarField>,
|
||||
}
|
||||
|
||||
// NIMFS: Non Interactive Multifolding Scheme
|
||||
pub struct NIMFS<C: CurveGroup> {
|
||||
_c: PhantomData<C>,
|
||||
}
|
||||
|
||||
impl<C: CurveGroup> NIMFS<C>
|
||||
where
|
||||
<C as Group>::ScalarField: Absorb,
|
||||
<C as CurveGroup>::BaseField: Absorb,
|
||||
{
|
||||
// proof method folds and returns the proof of the multifolding
|
||||
pub fn proof(
|
||||
tr: &mut Transcript<C::ScalarField, C>,
|
||||
poseidon_config: &PoseidonConfig<C::ScalarField>,
|
||||
ccs: CCS<C::ScalarField>,
|
||||
lcccs: LCCCS<C>,
|
||||
cccs: CCCS<C>,
|
||||
z1: Vec<C::ScalarField>,
|
||||
z2: Vec<C::ScalarField>,
|
||||
) -> LCCCS<C> {
|
||||
let s = log2(ccs.m) as usize; // s
|
||||
let s_ = log2(ccs.n) as usize; // s'
|
||||
let gamma = tr.get_challenge();
|
||||
let beta = tr.get_challenge_vec(s);
|
||||
|
||||
// get MLE of M_i
|
||||
let mut MLEs: Vec<SparseMultilinearExtension<C::ScalarField>> = Vec::new();
|
||||
let n_vars = (s + s_) as usize;
|
||||
for i in 0..ccs.M.len() {
|
||||
let M_i_MLE = matrix_to_mle(n_vars, ccs.m, ccs.n, &ccs.M[i]);
|
||||
MLEs.push(M_i_MLE);
|
||||
}
|
||||
// get MLE of z1 & z2
|
||||
let z1_MLE = vector_to_mle(s_, ccs.n, z1);
|
||||
let z2_MLE = vector_to_mle(s_, ccs.n, z2);
|
||||
|
||||
// compute Lj = eq(r_x,x) * \sum Mj * z1
|
||||
let mut Lj_evals: Vec<(usize, C::ScalarField)> = Vec::new();
|
||||
for i in 0..s_ {}
|
||||
// compute Q = eq(beta, x) * ( \sum c_i * \prod( \sum Mj * z1 ) )
|
||||
// compute g
|
||||
// let g: SparsePolynomial<C::ScalarField, SparseTerm>;
|
||||
// let proof = SC::<C>::prove(&poseidon_config, g);
|
||||
// fold C, u, x, v, w
|
||||
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
|
||||
fn matrix_to_mle<F: PrimeField>(
|
||||
n_vars: usize, // log2(m) + log2(n)
|
||||
m: usize,
|
||||
n: usize,
|
||||
M: &Vec<Vec<F>>,
|
||||
) -> SparseMultilinearExtension<F> {
|
||||
let mut M_evals: Vec<(usize, F)> = Vec::new();
|
||||
for i in 0..m {
|
||||
for j in 0..n {
|
||||
if !M[i][j].is_zero() {
|
||||
M_evals.push((i * n + j, M[i][j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
SparseMultilinearExtension::<F>::from_evaluations(n_vars, M_evals.iter())
|
||||
}
|
||||
|
||||
fn vector_to_mle<F: PrimeField>(s: usize, n: usize, z: Vec<F>) -> SparseMultilinearExtension<F> {
|
||||
let mut z_evals: Vec<(usize, F)> = Vec::new();
|
||||
for i in 0..n {
|
||||
if !z[i].is_zero() {
|
||||
z_evals.push((i, z[i]));
|
||||
}
|
||||
}
|
||||
SparseMultilinearExtension::<F>::from_evaluations(s, z_evals.iter())
|
||||
}
|
||||
|
||||
type SC<C: CurveGroup> = SumCheck<
|
||||
C::ScalarField,
|
||||
C,
|
||||
DensePolynomial<C::ScalarField>,
|
||||
SparsePolynomial<C::ScalarField, SparseTerm>,
|
||||
>;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::transcript::poseidon_test_config;
|
||||
use ark_mnt4_298::{Fr, G1Projective};
|
||||
use ark_std::One;
|
||||
use ark_std::UniformRand;
|
||||
|
||||
use crate::nifs::gen_test_values;
|
||||
|
||||
type P = Point<Fr>;
|
||||
|
||||
#[test]
|
||||
fn test_cccs_mles() {
|
||||
let (r1cs, ws, _) = gen_test_values(2);
|
||||
let z1: Vec<Fr> = ws[0].clone();
|
||||
println!("z1 {:?}", z1);
|
||||
|
||||
let ccs = r1cs.to_ccs();
|
||||
let s = log2(ccs.m) as usize; // s
|
||||
let s_ = log2(ccs.n) as usize; // s'
|
||||
let pow_s_ = (2 as usize).pow(s_ as u32);
|
||||
|
||||
let mut M_MLEs: Vec<SparseMultilinearExtension<Fr>> = Vec::new();
|
||||
let n_vars = (s + s_) as usize;
|
||||
for i in 0..ccs.M.len() {
|
||||
let M_i_MLE = matrix_to_mle(n_vars, ccs.m, ccs.n, &ccs.M[i]);
|
||||
println!("i:{}, M_i_mle: {:?}", i, M_i_MLE);
|
||||
M_MLEs.push(M_i_MLE);
|
||||
}
|
||||
|
||||
let z1_MLE = vector_to_mle(s_, ccs.n, z1);
|
||||
println!("z1_MLE: {:?}", z1_MLE);
|
||||
|
||||
let beta = Point::<Fr>::point_normal(s, 2); // imagine that this comes from random
|
||||
println!("beta: {:?}", beta);
|
||||
|
||||
// check Committed CCS relation
|
||||
let mut r: Fr = Fr::zero();
|
||||
for i in 0..ccs.q {
|
||||
let mut prod_res = Fr::one();
|
||||
// for j in 0..ccs.S.len() {
|
||||
for j in ccs.S[i].clone() {
|
||||
let mut Mj_z_eval = Fr::zero();
|
||||
// for k in 0..s_ {
|
||||
// over the boolean hypercube un s' vars, but only the combinations that lead to
|
||||
// some non-zero z()
|
||||
for k in 0..ccs.n {
|
||||
// over the whole boolean hypercube on s' vars
|
||||
// for k in 0..pow_s_ {
|
||||
let point_in_s_ = Point::<Fr>::point_normal(s_, k);
|
||||
// println!("point_in_s {:?}", point_in_s_);
|
||||
let z_eval = z1_MLE.evaluate(&point_in_s_).unwrap();
|
||||
// println!(" ===================================z_eval {:?}", z_eval);
|
||||
|
||||
// let point_in_s_plus_s_ = Point::<Fr>::point_complete(beta.clone(), s + s_, k);
|
||||
let mut point_in_s_plus_s_ = Point::<Fr>::point_normal(s_, k);
|
||||
point_in_s_plus_s_.append(&mut beta.clone());
|
||||
// println!("point_in_s_plus_s_ {:?}", point_in_s_plus_s_);
|
||||
// println!("j: {}, Mj {:?}", j, M_MLEs[j]);
|
||||
let Mj_eval = M_MLEs[j].evaluate(&point_in_s_plus_s_).unwrap();
|
||||
|
||||
if Mj_eval * z_eval != Fr::zero() {
|
||||
println!(" j: {}, Mj_eval {:?}", j, Mj_eval);
|
||||
println!(" z_eval {:?}", z_eval);
|
||||
println!(" =(Mj*z)_eval {:?}", Mj_eval * z_eval);
|
||||
}
|
||||
|
||||
Mj_z_eval += Mj_eval * z_eval;
|
||||
}
|
||||
println!("j: {}, {:?}\n", j, Mj_z_eval);
|
||||
prod_res += Mj_z_eval;
|
||||
}
|
||||
println!("i:{}, c: {:?}, {:?}\n", i, ccs.c[i], prod_res);
|
||||
r += ccs.c[i] * prod_res;
|
||||
}
|
||||
println!("r {:?}", r);
|
||||
// assert!(r.is_zero());
|
||||
}
|
||||
}
|
||||
@@ -14,6 +14,59 @@ use ark_crypto_primitives::sponge::{poseidon::PoseidonConfig, Absorb};
|
||||
|
||||
use crate::transcript::Transcript;
|
||||
|
||||
pub struct Point<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
impl<F: PrimeField> Point<F> {
|
||||
pub fn point_normal(n_elems: usize, iter_num: usize) -> Vec<F> {
|
||||
let p = Self::point(vec![], false, n_elems, iter_num);
|
||||
let mut r = vec![F::zero(); n_elems];
|
||||
for i in 0..n_elems {
|
||||
r[i] = p[i].unwrap();
|
||||
}
|
||||
r
|
||||
}
|
||||
pub fn point_complete(challenges: Vec<F>, n_elems: usize, iter_num: usize) -> Vec<F> {
|
||||
let p = Self::point(challenges, false, n_elems, iter_num);
|
||||
let mut r = vec![F::zero(); n_elems];
|
||||
for i in 0..n_elems {
|
||||
r[i] = p[i].unwrap();
|
||||
}
|
||||
r
|
||||
}
|
||||
fn point(challenges: Vec<F>, none: bool, n_elems: usize, iter_num: usize) -> Vec<Option<F>> {
|
||||
let mut n_vars = n_elems - challenges.len();
|
||||
assert!(n_vars >= log2(iter_num + 1) as usize);
|
||||
|
||||
if none {
|
||||
// WIP
|
||||
if n_vars == 0 {
|
||||
panic!("err"); // or return directly challenges vector
|
||||
}
|
||||
n_vars -= 1;
|
||||
}
|
||||
let none_pos = if none {
|
||||
challenges.len() + 1
|
||||
} else {
|
||||
challenges.len()
|
||||
};
|
||||
let mut p: Vec<Option<F>> = vec![None; n_elems];
|
||||
for i in 0..challenges.len() {
|
||||
p[i] = Some(challenges[i]);
|
||||
}
|
||||
for i in 0..n_vars {
|
||||
let k = F::from(iter_num as u64).into_bigint().to_bytes_le();
|
||||
let bit = k[i / 8] & (1 << (i % 8));
|
||||
if bit == 0 {
|
||||
p[none_pos + i] = Some(F::zero());
|
||||
} else {
|
||||
p[none_pos + i] = Some(F::one());
|
||||
}
|
||||
}
|
||||
p
|
||||
}
|
||||
}
|
||||
|
||||
pub struct SumCheck<
|
||||
F: PrimeField + Absorb,
|
||||
C: CurveGroup,
|
||||
@@ -84,46 +137,6 @@ where
|
||||
UV::from_coefficients_vec(univ_coeffs)
|
||||
}
|
||||
|
||||
fn point_complete(challenges: Vec<F>, n_elems: usize, iter_num: usize) -> Vec<F> {
|
||||
let p = Self::point(challenges, false, n_elems, iter_num);
|
||||
let mut r = vec![F::zero(); n_elems];
|
||||
for i in 0..n_elems {
|
||||
r[i] = p[i].unwrap();
|
||||
}
|
||||
r
|
||||
}
|
||||
fn point(challenges: Vec<F>, none: bool, n_elems: usize, iter_num: usize) -> Vec<Option<F>> {
|
||||
let mut n_vars = n_elems - challenges.len();
|
||||
assert!(n_vars >= log2(iter_num + 1) as usize);
|
||||
|
||||
if none {
|
||||
// WIP
|
||||
if n_vars == 0 {
|
||||
panic!("err"); // or return directly challenges vector
|
||||
}
|
||||
n_vars -= 1;
|
||||
}
|
||||
let none_pos = if none {
|
||||
challenges.len() + 1
|
||||
} else {
|
||||
challenges.len()
|
||||
};
|
||||
let mut p: Vec<Option<F>> = vec![None; n_elems];
|
||||
for i in 0..challenges.len() {
|
||||
p[i] = Some(challenges[i]);
|
||||
}
|
||||
for i in 0..n_vars {
|
||||
let k = F::from(iter_num as u64).into_bigint().to_bytes_le();
|
||||
let bit = k[i / 8] & (1 << (i % 8));
|
||||
if bit == 0 {
|
||||
p[none_pos + i] = Some(F::zero());
|
||||
} else {
|
||||
p[none_pos + i] = Some(F::one());
|
||||
}
|
||||
}
|
||||
p
|
||||
}
|
||||
|
||||
pub fn prove(poseidon_config: &PoseidonConfig<F>, g: MV) -> (F, Vec<UV>, F)
|
||||
where
|
||||
<MV as Polynomial<F>>::Point: From<Vec<F>>,
|
||||
@@ -133,14 +146,14 @@ where
|
||||
|
||||
let v = g.num_vars();
|
||||
|
||||
// compute H
|
||||
let mut H = F::zero();
|
||||
// compute T
|
||||
let mut T = F::zero();
|
||||
for i in 0..(2_u64.pow(v as u32) as usize) {
|
||||
let p = Self::point_complete(vec![], v, i);
|
||||
let p = Point::<F>::point_complete(vec![], v, i);
|
||||
|
||||
H += g.evaluate(&p.into());
|
||||
T += g.evaluate(&p.into());
|
||||
}
|
||||
transcript.add(&H);
|
||||
transcript.add(&T);
|
||||
|
||||
let mut ss: Vec<UV> = Vec::new();
|
||||
let mut r: Vec<F> = vec![];
|
||||
@@ -153,7 +166,7 @@ where
|
||||
|
||||
let mut s_i = UV::zero();
|
||||
for j in 0..n_points {
|
||||
let point = Self::point(r[..i].to_vec(), true, v, j);
|
||||
let point = Point::<F>::point(r[..i].to_vec(), true, v, j);
|
||||
s_i = s_i + Self::partial_evaluate(&g, &point);
|
||||
}
|
||||
transcript.add_vec(s_i.coeffs());
|
||||
@@ -161,7 +174,8 @@ where
|
||||
}
|
||||
|
||||
let last_g_eval = g.evaluate(&r.into());
|
||||
(H, ss, last_g_eval)
|
||||
// ss: intermediate univariate polynomials
|
||||
(T, ss, last_g_eval)
|
||||
}
|
||||
|
||||
pub fn verify(poseidon_config: &PoseidonConfig<F>, proof: (F, Vec<UV>, F)) -> bool {
|
||||
@@ -218,45 +232,46 @@ mod tests {
|
||||
let f1 = Fr::from(1);
|
||||
let f0 = Fr::from(0);
|
||||
type SC = SumCheck<Fr, G1Projective, DensePolynomial<Fr>, SparsePolynomial<Fr, SparseTerm>>;
|
||||
type P = Point<Fr>;
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 0);
|
||||
let p = P::point(vec![Fr::from(4_u32)], true, 5, 0);
|
||||
assert_eq!(vec![Some(f4), None, Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 1);
|
||||
let p = P::point(vec![Fr::from(4_u32)], true, 5, 1);
|
||||
assert_eq!(vec![Some(f4), None, Some(f1), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 2);
|
||||
let p = P::point(vec![Fr::from(4_u32)], true, 5, 2);
|
||||
assert_eq!(vec![Some(f4), None, Some(f0), Some(f1), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 3);
|
||||
let p = P::point(vec![Fr::from(4_u32)], true, 5, 3);
|
||||
assert_eq!(vec![Some(f4), None, Some(f1), Some(f1), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 4);
|
||||
let p = P::point(vec![Fr::from(4_u32)], true, 5, 4);
|
||||
assert_eq!(vec![Some(f4), None, Some(f0), Some(f0), Some(f1),], p);
|
||||
|
||||
// without None
|
||||
let p = SC::point(vec![], false, 4, 0);
|
||||
let p = P::point(vec![], false, 4, 0);
|
||||
assert_eq!(vec![Some(f0), Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 0);
|
||||
let p = P::point(vec![Fr::from(4_u32)], false, 5, 0);
|
||||
assert_eq!(vec![Some(f4), Some(f0), Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 1);
|
||||
let p = P::point(vec![Fr::from(4_u32)], false, 5, 1);
|
||||
assert_eq!(vec![Some(f4), Some(f1), Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 3);
|
||||
let p = P::point(vec![Fr::from(4_u32)], false, 5, 3);
|
||||
assert_eq!(vec![Some(f4), Some(f1), Some(f1), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 4);
|
||||
let p = P::point(vec![Fr::from(4_u32)], false, 5, 4);
|
||||
assert_eq!(vec![Some(f4), Some(f0), Some(f0), Some(f1), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 10);
|
||||
let p = P::point(vec![Fr::from(4_u32)], false, 5, 10);
|
||||
assert_eq!(vec![Some(f4), Some(f0), Some(f1), Some(f0), Some(f1),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 15);
|
||||
let p = P::point(vec![Fr::from(4_u32)], false, 5, 15);
|
||||
assert_eq!(vec![Some(f4), Some(f1), Some(f1), Some(f1), Some(f1),], p);
|
||||
|
||||
// let p = SC::point(vec![Fr::from(4_u32)], false, 4, 16); // TODO expect error
|
||||
// let p = P::point(vec![Fr::from(4_u32)], false, 4, 16); // TODO expect error
|
||||
}
|
||||
|
||||
#[test]
|
||||
15
src/lib.rs
15
src/lib.rs
@@ -5,13 +5,12 @@
|
||||
// #![allow(unused)] // TMP
|
||||
#![allow(dead_code)] // TMP
|
||||
|
||||
mod circuits;
|
||||
mod ivc;
|
||||
mod nifs;
|
||||
mod pedersen;
|
||||
mod sumcheck;
|
||||
mod transcript;
|
||||
mod utils;
|
||||
pub mod circuits;
|
||||
pub mod ivc;
|
||||
pub mod nifs;
|
||||
pub mod pedersen;
|
||||
pub mod transcript;
|
||||
pub mod utils;
|
||||
|
||||
// hypernova related:
|
||||
mod hypernova;
|
||||
pub mod hypernova;
|
||||
|
||||
Reference in New Issue
Block a user