mirror of
https://github.com/arnaucube/nova-study.git
synced 2026-01-08 23:21:30 +01:00
add sum-check impl, not currently used by the rest of the repo
This commit is contained in:
@@ -6,4 +6,4 @@ Implementation of [Nova](https://eprint.iacr.org/2021/370.pdf) using [arkworks-r
|
||||
|
||||
This repo is an ongoing implementation, the code will be dirty for a while and not optimized but just to understand and experiment with the internals of the scheme and try experimental combinations.
|
||||
|
||||
Thanks to [Levs57](https://twitter.com/levs57), [Nalin Bhardwaj](https://twitter.com/nibnalin) and [Carlos](https://twitter.com/cperezz19) for clarifications on the Nova paper.
|
||||
Thanks to [Levs57](https://twitter.com/levs57), [Nalin Bhardwaj](https://twitter.com/nibnalin) and [Carlos Pérez](https://twitter.com/cperezz19) for clarifications on the Nova paper.
|
||||
|
||||
309
src/sumcheck.rs
Normal file
309
src/sumcheck.rs
Normal file
@@ -0,0 +1,309 @@
|
||||
// Sum-check protocol initial implementation, not used by the rest of the repo but implemented as
|
||||
// an exercise and might be used in the future.
|
||||
|
||||
use ark_ff::{BigInteger, PrimeField};
|
||||
use ark_poly::{
|
||||
multivariate::{SparsePolynomial, SparseTerm, Term},
|
||||
univariate::DensePolynomial,
|
||||
DenseMVPolynomial, DenseUVPolynomial, EvaluationDomain, GeneralEvaluationDomain, Polynomial,
|
||||
SparseMultilinearExtension,
|
||||
};
|
||||
use ark_std::cfg_into_iter;
|
||||
use ark_std::log2;
|
||||
use ark_std::marker::PhantomData;
|
||||
use ark_std::ops::Mul;
|
||||
use ark_std::{rand::Rng, UniformRand};
|
||||
|
||||
pub struct SumCheck<
|
||||
F: PrimeField,
|
||||
UV: Polynomial<F> + DenseUVPolynomial<F>,
|
||||
MV: Polynomial<F> + DenseMVPolynomial<F>,
|
||||
> {
|
||||
_f: PhantomData<F>,
|
||||
_uv: PhantomData<UV>,
|
||||
_mv: PhantomData<MV>,
|
||||
}
|
||||
|
||||
impl<
|
||||
F: PrimeField,
|
||||
UV: Polynomial<F> + DenseUVPolynomial<F>,
|
||||
MV: Polynomial<F> + DenseMVPolynomial<F>,
|
||||
> SumCheck<F, UV, MV>
|
||||
{
|
||||
fn partial_evaluate(g: &MV, point: &[Option<F>]) -> UV {
|
||||
assert!(point.len() >= g.num_vars(), "Invalid evaluation domain");
|
||||
// TODO: add check: there can only be 1 'None' value in point
|
||||
if g.is_zero() {
|
||||
return UV::from_coefficients_vec(vec![F::zero()]);
|
||||
}
|
||||
|
||||
// note: this can be parallelized with cfg_into_iter
|
||||
let mut univ_terms: Vec<(F, SparseTerm)> = vec![];
|
||||
for (coef, term) in g.terms().iter() {
|
||||
// partial_evaluate each term
|
||||
let mut new_coef = F::one();
|
||||
let mut new_term = Vec::new();
|
||||
for (var, power) in term.iter() {
|
||||
match point[*var] {
|
||||
Some(v) => {
|
||||
if v.is_zero() {
|
||||
new_coef = F::zero();
|
||||
new_term = vec![];
|
||||
break;
|
||||
} else {
|
||||
new_coef = new_coef * v.pow([(*power) as u64]);
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
new_term.push((*var, *power));
|
||||
}
|
||||
};
|
||||
}
|
||||
let new_term = SparseTerm::new(new_term);
|
||||
let new_coef = new_coef * coef;
|
||||
univ_terms.push((new_coef, new_term));
|
||||
}
|
||||
let mv_poly: SparsePolynomial<F, SparseTerm> =
|
||||
DenseMVPolynomial::<F>::from_coefficients_vec(g.num_vars(), univ_terms.clone());
|
||||
|
||||
let mut univ_coeffs: Vec<F> = vec![F::zero(); mv_poly.degree() + 1];
|
||||
for (coef, term) in univ_terms {
|
||||
if term.is_empty() {
|
||||
univ_coeffs[0] += coef;
|
||||
continue;
|
||||
}
|
||||
for (_, power) in term.iter() {
|
||||
univ_coeffs[*power] += coef;
|
||||
}
|
||||
}
|
||||
UV::from_coefficients_vec(univ_coeffs)
|
||||
}
|
||||
|
||||
fn point_complete(challenges: Vec<F>, n_elems: usize, iter_num: usize) -> Vec<F> {
|
||||
let p = Self::point(challenges, false, n_elems, iter_num);
|
||||
// let mut r = Vec::new();
|
||||
let mut r = vec![F::zero(); n_elems];
|
||||
for i in 0..n_elems {
|
||||
// r.push(p[i].unwrap());
|
||||
r[i] = p[i].unwrap();
|
||||
}
|
||||
r
|
||||
}
|
||||
fn point(challenges: Vec<F>, none: bool, n_elems: usize, iter_num: usize) -> Vec<Option<F>> {
|
||||
let mut n_vars = n_elems - challenges.len();
|
||||
assert!(n_vars >= log2(iter_num + 1) as usize);
|
||||
|
||||
if none {
|
||||
// WIP
|
||||
if n_vars == 0 {
|
||||
panic!("err");
|
||||
}
|
||||
n_vars -= 1;
|
||||
}
|
||||
let none_pos = if none {
|
||||
challenges.len() + 1
|
||||
} else {
|
||||
challenges.len()
|
||||
};
|
||||
let mut p: Vec<Option<F>> = vec![None; n_elems];
|
||||
for i in 0..challenges.len() {
|
||||
p[i] = Some(challenges[i]);
|
||||
}
|
||||
for i in 0..n_vars {
|
||||
let k = F::from(iter_num as u64).into_bigint().to_bytes_le();
|
||||
let bit = k[(i / 8) as usize] & (1 << (i % 8));
|
||||
if bit == 0 {
|
||||
p[none_pos + i] = Some(F::zero());
|
||||
} else {
|
||||
p[none_pos + i] = Some(F::one());
|
||||
}
|
||||
}
|
||||
p
|
||||
}
|
||||
|
||||
pub fn prove(g: MV) -> (F, Vec<UV>, F)
|
||||
where
|
||||
<MV as Polynomial<F>>::Point: From<Vec<F>>,
|
||||
{
|
||||
let v = g.num_vars();
|
||||
|
||||
let r = vec![F::from(2_u32), F::from(3_u32), F::from(6_u32)]; // TMP will come from transcript
|
||||
|
||||
// compute H
|
||||
let mut H = F::zero();
|
||||
for i in 0..(2_u64.pow(v as u32) as usize) {
|
||||
let p = Self::point_complete(vec![], v, i);
|
||||
|
||||
H = H + g.evaluate(&p.into());
|
||||
}
|
||||
|
||||
let mut ss: Vec<UV> = Vec::new();
|
||||
for i in 0..v {
|
||||
let var_slots = v - 1 - i;
|
||||
let n_points = 2_u64.pow(var_slots as u32) as usize;
|
||||
let mut s_i = UV::zero();
|
||||
let r_round = r.as_slice()[..i].to_vec();
|
||||
for j in 0..n_points {
|
||||
let point = Self::point(r_round.clone(), true, v, j);
|
||||
s_i = s_i + Self::partial_evaluate(&g, &point);
|
||||
}
|
||||
ss.push(s_i);
|
||||
}
|
||||
|
||||
let point_last = r;
|
||||
let last_g_eval = g.evaluate(&point_last.into());
|
||||
(H, ss, last_g_eval)
|
||||
}
|
||||
|
||||
pub fn verify(proof: (F, Vec<UV>, F)) -> bool {
|
||||
// let c: F, ss: Vec<UV>;
|
||||
let (c, ss, last_g_eval) = proof;
|
||||
|
||||
let r = vec![F::from(2_u32), F::from(3_u32), F::from(6_u32)]; // TMP will come from transcript
|
||||
|
||||
for (i, s) in ss.iter().enumerate() {
|
||||
// TODO check degree
|
||||
if i == 0 {
|
||||
if c != s.evaluate(&F::zero()) + s.evaluate(&F::one()) {
|
||||
return false;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if ss[i - 1].evaluate(&r[i - 1]) != s.evaluate(&F::zero()) + s.evaluate(&F::one()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// last round
|
||||
if ss[ss.len() - 1].evaluate(&r[r.len() - 1]) != last_g_eval {
|
||||
return false;
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use ark_bn254::Fr; // scalar field
|
||||
|
||||
#[test]
|
||||
fn test_new_point() {
|
||||
let f4 = Fr::from(4_u32);
|
||||
let f1 = Fr::from(1);
|
||||
let f0 = Fr::from(0);
|
||||
type SC = SumCheck<Fr, DensePolynomial<Fr>, SparsePolynomial<Fr, SparseTerm>>;
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 0);
|
||||
assert_eq!(vec![Some(f4), None, Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 1);
|
||||
assert_eq!(vec![Some(f4), None, Some(f1), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 2);
|
||||
assert_eq!(vec![Some(f4), None, Some(f0), Some(f1), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 3);
|
||||
assert_eq!(vec![Some(f4), None, Some(f1), Some(f1), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], true, 5, 4);
|
||||
assert_eq!(vec![Some(f4), None, Some(f0), Some(f0), Some(f1),], p);
|
||||
|
||||
// without None
|
||||
let p = SC::point(vec![], false, 4, 0);
|
||||
assert_eq!(vec![Some(f0), Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 0);
|
||||
assert_eq!(vec![Some(f4), Some(f0), Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 1);
|
||||
assert_eq!(vec![Some(f4), Some(f1), Some(f0), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 3);
|
||||
assert_eq!(vec![Some(f4), Some(f1), Some(f1), Some(f0), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 4);
|
||||
assert_eq!(vec![Some(f4), Some(f0), Some(f0), Some(f1), Some(f0),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 10);
|
||||
assert_eq!(vec![Some(f4), Some(f0), Some(f1), Some(f0), Some(f1),], p);
|
||||
|
||||
let p = SC::point(vec![Fr::from(4_u32)], false, 5, 15);
|
||||
assert_eq!(vec![Some(f4), Some(f1), Some(f1), Some(f1), Some(f1),], p);
|
||||
|
||||
// let p = SC::point(vec![Fr::from(4_u32)], false, 4, 16); // TODO expect error
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_partial_evaluate() {
|
||||
// g(X_0, X_1, X_2) = 2 X_0^3 + X_0 X_2 + X_1 X_2
|
||||
let terms = vec![
|
||||
(Fr::from(2u32), SparseTerm::new(vec![(0_usize, 3)])),
|
||||
(
|
||||
Fr::from(1u32),
|
||||
SparseTerm::new(vec![(0_usize, 1), (2_usize, 1)]),
|
||||
),
|
||||
(
|
||||
Fr::from(1u32),
|
||||
SparseTerm::new(vec![(1_usize, 1), (2_usize, 1)]),
|
||||
),
|
||||
];
|
||||
let p = SparsePolynomial::from_coefficients_slice(3, &terms);
|
||||
|
||||
type SC = SumCheck<Fr, DensePolynomial<Fr>, SparsePolynomial<Fr, SparseTerm>>;
|
||||
|
||||
let e0 = SC::partial_evaluate(&p, &[Some(Fr::from(2_u32)), None, Some(Fr::from(0_u32))]);
|
||||
assert_eq!(e0.coeffs(), vec![Fr::from(16_u32)]);
|
||||
let e1 = SC::partial_evaluate(&p, &[Some(Fr::from(2_u32)), None, Some(Fr::from(1_u32))]);
|
||||
assert_eq!(e1.coeffs(), vec![Fr::from(18_u32), Fr::from(1)]);
|
||||
|
||||
assert_eq!((e0 + e1).coeffs(), vec![Fr::from(34_u32), Fr::from(1)]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_flow_hardcoded_values() {
|
||||
let mut rng = ark_std::test_rng();
|
||||
// let p = SparsePolynomial::<Fr, SparseTerm>::rand(deg, 3, &mut rng);
|
||||
// let p = rand_poly(3, 3, &mut rng);
|
||||
|
||||
// g(X_0, X_1, X_2) = 2 X_0^3 + X_0 X_2 + X_1 X_2
|
||||
let terms = vec![
|
||||
(Fr::from(2u32), SparseTerm::new(vec![(0_usize, 3)])),
|
||||
(
|
||||
Fr::from(1u32),
|
||||
SparseTerm::new(vec![(0_usize, 1), (2_usize, 1)]),
|
||||
),
|
||||
(
|
||||
Fr::from(1u32),
|
||||
SparseTerm::new(vec![(1_usize, 1), (2_usize, 1)]),
|
||||
),
|
||||
];
|
||||
let p = SparsePolynomial::from_coefficients_slice(3, &terms);
|
||||
// println!("p {:?}", p);
|
||||
|
||||
type SC = SumCheck<Fr, DensePolynomial<Fr>, SparsePolynomial<Fr, SparseTerm>>;
|
||||
|
||||
let proof = SC::prove(p);
|
||||
assert_eq!(proof.0, Fr::from(12_u32));
|
||||
println!("proof {:?}", proof);
|
||||
|
||||
let v = SC::verify(proof);
|
||||
assert!(v);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_flow_rng() {
|
||||
let mut rng = ark_std::test_rng();
|
||||
let p = SparsePolynomial::<Fr, SparseTerm>::rand(3, 3, &mut rng);
|
||||
println!("p {:?}", p);
|
||||
|
||||
type SC = SumCheck<Fr, DensePolynomial<Fr>, SparsePolynomial<Fr, SparseTerm>>;
|
||||
|
||||
let proof = SC::prove(p);
|
||||
println!("proof.s len {:?}", proof.1.len());
|
||||
|
||||
let v = SC::verify(proof);
|
||||
assert!(v);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user