objectImageIdentifierAI
- imagesToDataset
- From two directories ('object' and 'noobject'), gets all the images inside the directories and generates the dataset
- nnTrain
- From the dataset file generated in the previous step, train the Neural Network
- serverPredictor
- Runs a server API, that with the Neural Network classifies the incoming images
- smartphoneApp
- Take photo and upload to the server, to get the response (object or no object)
Real steps
- download images
- In /serverPredictor directory
python classifierChooser.py
This will generate the model.pkl. Then, run the serverPredictor.py
python serverPredictor.py