Browse Source

bool evaluator encrypt/decrypt and keygen works

par-agg-key-shares
Janmajaya Mall 11 months ago
parent
commit
3113a3d37f
7 changed files with 416 additions and 85 deletions
  1. +10
    -2
      src/backend.rs
  2. +324
    -36
      src/bool.rs
  3. +5
    -1
      src/decomposer.rs
  4. +10
    -0
      src/lib.rs
  5. +39
    -32
      src/lwe.rs
  6. +11
    -5
      src/ntt.rs
  7. +17
    -9
      src/rgsw.rs

+ 10
- 2
src/backend.rs

@ -1,5 +1,10 @@
use itertools::izip;
pub trait ModInit {
type Element;
fn new(q: Self::Element) -> Self;
}
pub trait VectorOps {
type Element;
@ -40,8 +45,9 @@ pub struct ModularOpsU64 {
barrett_alpha: usize,
}
impl ModularOpsU64 {
pub fn new(q: u64) -> ModularOpsU64 {
impl ModInit for ModularOpsU64 {
type Element = u64;
fn new(q: u64) -> ModularOpsU64 {
let logq = 64 - q.leading_zeros();
// barrett calculation
@ -55,7 +61,9 @@ impl ModularOpsU64 {
barrett_mu: mu,
}
}
}
impl ModularOpsU64 {
fn add_mod_fast(&self, a: u64, b: u64) -> u64 {
debug_assert!(a < self.q);
debug_assert!(b < self.q);

+ 324
- 36
src/bool.rs

@ -1,20 +1,19 @@
use std::collections::HashMap;
use std::{collections::HashMap, fmt::Debug, marker::PhantomData};
use num_traits::{FromPrimitive, One, PrimInt, ToPrimitive, Zero};
use itertools::Itertools;
use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, Zero};
use crate::{
backend::{ArithmeticOps, VectorOps},
decomposer::Decomposer,
lwe::lwe_key_switch,
ntt::Ntt,
rgsw::{galois_auto, rlwe_by_rgsw, IsTrivial},
Matrix, MatrixEntity, MatrixMut, Row, RowMut,
backend::{ArithmeticOps, ModInit, VectorOps},
decomposer::{gadget_vector, Decomposer, DefaultDecomposer, NumInfo},
lwe::{decrypt_lwe, encrypt_lwe, lwe_key_switch, lwe_ksk_keygen, LweSecret},
ntt::{Ntt, NttInit},
random::{DefaultSecureRng, RandomGaussianDist, RandomUniformDist},
rgsw::{encrypt_rgsw, galois_auto, galois_key_gen, rlwe_by_rgsw, IsTrivial, RlweSecret},
utils::{generate_prime, mod_exponent, TryConvertFrom, WithLocal},
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
};
struct BoolEvaluator {}
impl BoolEvaluator {}
trait PbsKey {
type M: Matrix;
@ -23,6 +22,278 @@ trait PbsKey {
fn auto_map_index(&self, k: isize) -> &[usize];
fn auto_map_sign(&self, k: isize) -> &[bool];
}
trait Parameters {
type Element;
type D: Decomposer<Element = Self::Element>;
fn rlwe_q(&self) -> Self::Element;
fn lwe_q(&self) -> Self::Element;
fn br_q(&self) -> usize;
fn d_rgsw(&self) -> usize;
fn d_lwe(&self) -> usize;
fn rlwe_n(&self) -> usize;
fn lwe_n(&self) -> usize;
/// Embedding fator for ring X^{q}+1 inside
fn embedding_factor(&self) -> usize;
/// generator g
fn g(&self) -> isize;
fn decomoposer_lwe(&self) -> &Self::D;
fn decomoposer_rlwe(&self) -> &Self::D;
/// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k =
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
/// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t
/// a = -g^{k}, then k is expressed as k=k+q/2
fn g_k_dlog_map(&self) -> &[usize];
}
struct ClientKey {
sk_rlwe: RlweSecret,
sk_lwe: LweSecret,
}
struct ServerKey<M> {
/// Rgsw cts of LWE secret elements
rgsw_cts: Vec<M>,
/// Galois keys
galois_keys: HashMap<isize, M>,
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
lwe_ksk: M,
}
struct BoolParameters<El> {
rlwe_q: El,
rlwe_logq: usize,
lwe_q: El,
lwe_logq: usize,
br_q: usize,
rlwe_n: usize,
lwe_n: usize,
d_rgsw: usize,
logb_rgsw: usize,
d_lwe: usize,
logb_lwe: usize,
g: usize,
w: usize,
}
struct BoolEvaluator<M, E, Ntt, ModOp> {
parameters: BoolParameters<E>,
decomposer_rlwe: DefaultDecomposer<E>,
decomposer_lwe: DefaultDecomposer<E>,
g_k_dlog_map: Vec<usize>,
rlwe_nttop: Ntt,
rlwe_modop: ModOp,
lwe_modop: ModOp,
embedding_factor: usize,
_phantom: PhantomData<M>,
}
impl<M, NttOp, ModOp> BoolEvaluator<M, M::MatElement, NttOp, ModOp>
where
NttOp: NttInit<Element = M::MatElement> + Ntt<Element = M::MatElement>,
ModOp: ModInit<Element = M::MatElement>
+ ArithmeticOps<Element = M::MatElement>
+ VectorOps<Element = M::MatElement>,
M::MatElement: PrimInt + Debug + NumInfo + FromPrimitive,
M: MatrixEntity + MatrixMut,
M::R: TryConvertFrom<[i32], Parameters = M::MatElement> + RowEntity,
M: TryConvertFrom<[i32], Parameters = M::MatElement>,
<M as Matrix>::R: RowMut,
DefaultSecureRng: RandomGaussianDist<[M::MatElement], Parameters = M::MatElement>
+ RandomGaussianDist<M::MatElement, Parameters = M::MatElement>
+ RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
{
fn new(parameters: BoolParameters<M::MatElement>) -> Self {
//TODO(Jay): Run sanity checks for modulus values in parameters
let decomposer_rlwe =
DefaultDecomposer::new(parameters.rlwe_q, parameters.logb_rgsw, parameters.d_rgsw);
let decomposer_lwe =
DefaultDecomposer::new(parameters.lwe_q, parameters.logb_lwe, parameters.d_lwe);
// generatr dlog map s.t. g^{k} % q = a, for all a \in Z*_{q}
let g = parameters.g;
let q = parameters.br_q;
let mut g_k_dlog_map = vec![0usize; q];
for i in 0..q / 2 {
let v = mod_exponent(g as u64, i as u64, q as u64) as usize;
// g^i
g_k_dlog_map[v] = i;
// -(g^i)
g_k_dlog_map[q - v] = i + (q / 2);
}
let embedding_factor = (2 * parameters.rlwe_n) / q;
let rlwe_nttop = NttOp::new(parameters.rlwe_q, parameters.rlwe_n);
let rlwe_modop = ModInit::new(parameters.rlwe_q);
let lwe_modop = ModInit::new(parameters.lwe_q);
BoolEvaluator {
parameters: parameters,
decomposer_lwe,
decomposer_rlwe,
g_k_dlog_map,
embedding_factor,
lwe_modop,
rlwe_modop,
rlwe_nttop,
_phantom: PhantomData,
}
}
fn client_key(&self) -> ClientKey {
let sk_lwe = LweSecret::random(self.parameters.lwe_n >> 1, self.parameters.lwe_n);
let sk_rlwe = RlweSecret::random(self.parameters.rlwe_n >> 1, self.parameters.rlwe_n);
ClientKey { sk_rlwe, sk_lwe }
}
fn server_key(&self, client_key: &ClientKey) -> ServerKey<M> {
let sk_rlwe = &client_key.sk_rlwe;
let sk_lwe = &client_key.sk_lwe;
let d_rgsw_gadget_vec = gadget_vector(
self.parameters.rlwe_logq,
self.parameters.logb_rgsw,
self.parameters.d_rgsw,
);
// generate galois key -g, g
let mut galois_keys = HashMap::new();
let g = self.parameters.g as isize;
for i in [g, -g] {
let gk = DefaultSecureRng::with_local_mut(|rng| {
let mut ksk_out = M::zeros(self.parameters.d_rgsw * 2, self.parameters.rlwe_n);
galois_key_gen(
&mut ksk_out,
sk_rlwe,
i,
&d_rgsw_gadget_vec,
&self.rlwe_modop,
&self.rlwe_nttop,
rng,
);
ksk_out
});
galois_keys.insert(i, gk);
}
// generate rgsw ciphertexts RGSW(si) where si is i^th LWE secret element
let ring_size = self.parameters.rlwe_n;
let rlwe_q = self.parameters.rlwe_q;
let rgsw_cts = sk_lwe
.values()
.iter()
.map(|si| {
// X^{si}; assume |emebedding_factor * si| < N
let mut m = M::zeros(1, ring_size);
let si = (self.embedding_factor as i32) * si;
if si < 0 {
// X^{-i} = X^{2N - i} = -X^{N-i}
m.set(
0,
ring_size - (si.abs() as usize),
rlwe_q - M::MatElement::one(),
);
} else {
// X^{i}
m.set(0, (si.abs() as usize), M::MatElement::one());
}
self.rlwe_nttop.forward(m.get_row_mut(0));
let rgsw_si = DefaultSecureRng::with_local_mut(|rng| {
let mut rgsw_si = M::zeros(self.parameters.d_rgsw * 4, ring_size);
encrypt_rgsw(
&mut rgsw_si,
&m,
&d_rgsw_gadget_vec,
sk_rlwe,
&self.rlwe_modop,
&self.rlwe_nttop,
rng,
);
rgsw_si
});
rgsw_si
})
.collect_vec();
// LWE KSK from RLWE secret s -> LWE secret z
let d_lwe_gadget = gadget_vector(
self.parameters.lwe_logq,
self.parameters.logb_lwe,
self.parameters.d_lwe,
);
let mut lwe_ksk = DefaultSecureRng::with_local_mut(|rng| {
let mut out = M::zeros(self.parameters.d_lwe * ring_size, self.parameters.lwe_n + 1);
lwe_ksk_keygen(
&sk_rlwe.values(),
&sk_lwe.values(),
&mut out,
&d_lwe_gadget,
&self.lwe_modop,
rng,
);
out
});
ServerKey {
rgsw_cts,
galois_keys,
lwe_ksk,
}
}
pub fn encrypt(&self, m: bool, client_key: &ClientKey) -> M::R {
let rlwe_q_by8 =
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
.unwrap();
let m = if m {
// Q/8
rlwe_q_by8
} else {
// -Q/8
self.parameters.rlwe_q - rlwe_q_by8
};
DefaultSecureRng::with_local_mut(|rng| {
let mut lwe_out = M::R::zeros(self.parameters.rlwe_n + 1);
encrypt_lwe(
&mut lwe_out,
&m,
client_key.sk_rlwe.values(),
&self.rlwe_modop,
rng,
);
lwe_out
})
}
pub fn decrypt(&self, lwe_ct: &M::R, client_key: &ClientKey) -> bool {
let m = decrypt_lwe(lwe_ct, client_key.sk_rlwe.values(), &self.rlwe_modop);
let m = {
// m + q/8 => {0,q/4 1}
let rlwe_q_by8 =
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
.unwrap();
(((m + rlwe_q_by8).to_f64().unwrap() * 4.0) / self.parameters.rlwe_q.to_f64().unwrap())
.round()
.to_usize()
.unwrap()
% 4
};
if m == 0 {
false
} else if m == 1 {
true
} else {
panic!("Incorrect bool decryption. Got m={m} expected m to be 0 or 1")
}
}
}
/// LMKCY+ Blind rotation
///
@ -137,29 +408,6 @@ fn blind_rotation<
});
}
trait Parameters {
type Element;
type D: Decomposer<Element = Self::Element>;
fn rlwe_q(&self) -> Self::Element;
fn lwe_q(&self) -> Self::Element;
fn br_q(&self) -> usize;
fn d_rgsw(&self) -> usize;
fn d_lwe(&self) -> usize;
fn rlwe_n(&self) -> usize;
fn lwe_n(&self) -> usize;
// Embedding fator for ring X^{q}+1 inside
fn embedding_factor(&self) -> usize;
// generator g
fn g(&self) -> isize;
fn decomoposer_lwe(&self) -> &Self::D;
fn decomoposer_rlwe(&self) -> &Self::D;
/// Maps a \in Z^*_{2q} to discrete log k, with generator g (i.e. g^k =
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
/// For any a, k is s.t. a = g^{k}, then k is expressed as k. If k is s.t a
/// = -g^{k/2}, then k is expressed as k=k+q/2
fn g_k_dlog_map(&self) -> &[usize];
}
/// - Mod down
/// - key switching
/// - mod down
@ -274,7 +522,6 @@ fn pbs<
partb_trivial_rlwe[2 * index] = *v;
});
}
// TODO Rotate test input
// blind rotate
blind_rotation(
@ -358,3 +605,44 @@ fn monomial_mul>(
}
});
}
#[cfg(test)]
mod tests {
use crate::{backend::ModularOpsU64, ntt::NttBackendU64};
use super::*;
const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
rlwe_q: 4294957057u64,
rlwe_logq: 32,
lwe_q: 1 << 16,
lwe_logq: 16,
br_q: 1 << 9,
rlwe_n: 1 << 10,
lwe_n: 490,
d_rgsw: 4,
logb_rgsw: 7,
d_lwe: 4,
logb_lwe: 4,
g: 5,
w: 1,
};
#[test]
fn encrypt_decrypt_works() {
// let prime = generate_prime(32, 2 * 1024, 1 << 32);
// dbg!(prime);
let bool_evaluator =
BoolEvaluator::<Vec<Vec<u64>>, u64, NttBackendU64, ModularOpsU64>::new(SP_BOOL_PARAMS);
let client_key = bool_evaluator.client_key();
// let sever_key = bool_evaluator.server_key(&client_key);
let mut m = true;
for _ in 0..1000 {
let lwe_ct = bool_evaluator.encrypt(m, &client_key);
let m_back = bool_evaluator.decrypt(&lwe_ct, &client_key);
assert_eq!(m, m_back);
m = !m;
}
}
}

+ 5
- 1
src/decomposer.rs

@ -143,7 +143,11 @@ fn round_value(value: T, ignore_bits: usize) -> T {
mod tests {
use rand::{thread_rng, Rng};
use crate::{backend::ModularOpsU64, decomposer::round_value, utils::generate_prime};
use crate::{
backend::{ModInit, ModularOpsU64},
decomposer::round_value,
utils::generate_prime,
};
use super::{Decomposer, DefaultDecomposer};

+ 10
- 0
src/lib.rs

@ -77,6 +77,10 @@ pub trait Row: AsRef<[Self::Element]> {
pub trait RowMut: Row + AsMut<[<Self as Row>::Element]> {}
pub trait RowEntity: Row {
fn zeros(col: usize) -> Self;
}
trait Secret {
type Element;
fn values(&self) -> &[Self::Element];
@ -123,3 +127,9 @@ impl Row for Vec {
}
impl<T> RowMut for Vec<T> {}
impl<T: Zero + Clone> RowEntity for Vec<T> {
fn zeros(col: usize) -> Self {
vec![T::zero(); col]
}
}

+ 39
- 32
src/lwe.rs

@ -21,7 +21,7 @@ trait LweKeySwitchParameters {
trait LweCiphertext<M: Matrix> {}
struct LweSecret {
pub struct LweSecret {
values: Vec<i32>,
}
@ -33,7 +33,7 @@ impl Secret for LweSecret {
}
impl LweSecret {
fn random(hw: usize, n: usize) -> LweSecret {
pub(crate) fn random(hw: usize, n: usize) -> LweSecret {
DefaultSecureRng::with_local_mut(|rng| {
let mut out = vec![0i32; n];
fill_random_ternary_secret_with_hamming_weight(&mut out, hw, rng);
@ -71,38 +71,32 @@ pub(crate) fn lwe_key_switch<
lwe_out.as_mut()[0] = out_b;
}
fn lwe_ksk_keygen<
pub fn lwe_ksk_keygen<
Mmut: MatrixMut,
S: Secret,
S,
Op: VectorOps<Element = Mmut::MatElement> + ArithmeticOps<Element = Mmut::MatElement>,
R: RandomGaussianDist<Mmut::MatElement, Parameters = Mmut::MatElement>
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
>(
from_lwe_sk: &S,
to_lwe_sk: &S,
from_lwe_sk: &[S],
to_lwe_sk: &[S],
ksk_out: &mut Mmut,
gadget: &[Mmut::MatElement],
operator: &Op,
rng: &mut R,
) where
<Mmut as Matrix>::R: RowMut,
Mmut::R: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
Mmut::R: TryConvertFrom<[S], Parameters = Mmut::MatElement>,
Mmut::MatElement: Zero + Debug,
{
assert!(
ksk_out.dimension()
== (
from_lwe_sk.values().len() * gadget.len(),
to_lwe_sk.values().len() + 1,
)
);
assert!(ksk_out.dimension() == (from_lwe_sk.len() * gadget.len(), to_lwe_sk.len() + 1,));
let d = gadget.len();
let modulus = VectorOps::modulus(operator);
let mut neg_sk_in_m = Mmut::R::try_convert_from(from_lwe_sk.values(), &modulus);
let mut neg_sk_in_m = Mmut::R::try_convert_from(from_lwe_sk, &modulus);
operator.elwise_neg_mut(neg_sk_in_m.as_mut());
let sk_out_m = Mmut::R::try_convert_from(to_lwe_sk.values(), &modulus);
let sk_out_m = Mmut::R::try_convert_from(to_lwe_sk, &modulus);
izip!(
neg_sk_in_m.as_ref(),
@ -134,23 +128,23 @@ fn lwe_ksk_keygen<
}
/// Encrypts encoded message m as LWE ciphertext
fn encrypt_lwe<
pub fn encrypt_lwe<
Ro: Row + RowMut,
R: RandomGaussianDist<Ro::Element, Parameters = Ro::Element>
+ RandomUniformDist<[Ro::Element], Parameters = Ro::Element>,
S: Secret,
S,
Op: ArithmeticOps<Element = Ro::Element>,
>(
lwe_out: &mut Ro,
m: &Ro::Element,
s: &S,
s: &[S],
operator: &Op,
rng: &mut R,
) where
Ro: TryConvertFrom<[S::Element], Parameters = Ro::Element>,
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
Ro::Element: Zero,
{
let s = Ro::try_convert_from(s.values(), &operator.modulus());
let s = Ro::try_convert_from(s, &operator.modulus());
assert!(s.as_ref().len() == (lwe_out.as_ref().len() - 1));
// a*s
@ -168,16 +162,16 @@ fn encrypt_lwe<
lwe_out.as_mut()[0] = b;
}
fn decrypt_lwe<Ro: Row, Op: ArithmeticOps<Element = Ro::Element>, S: Secret>(
pub fn decrypt_lwe<Ro: Row, Op: ArithmeticOps<Element = Ro::Element>, S>(
lwe_ct: &Ro,
s: &S,
s: &[S],
operator: &Op,
) -> Ro::Element
where
Ro: TryConvertFrom<[S::Element], Parameters = Ro::Element>,
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
Ro::Element: Zero,
{
let s = Ro::try_convert_from(s.values(), &operator.modulus());
let s = Ro::try_convert_from(s, &operator.modulus());
let mut sa = Ro::Element::zero();
izip!(lwe_ct.as_ref().iter().skip(1), s.as_ref()).for_each(|(ai, si)| {
@ -193,10 +187,11 @@ where
mod tests {
use crate::{
backend::ModularOpsU64,
backend::{ModInit, ModularOpsU64},
decomposer::{gadget_vector, DefaultDecomposer},
lwe::lwe_key_switch,
random::DefaultSecureRng,
Secret,
};
use super::{decrypt_lwe, encrypt_lwe, lwe_ksk_keygen, LweSecret};
@ -217,8 +212,14 @@ mod tests {
for m in 0..1u64 << logp {
let encoded_m = m << (logq - logp);
let mut lwe_ct = vec![0u64; lwe_n + 1];
encrypt_lwe(&mut lwe_ct, &encoded_m, &lwe_sk, &modq_op, &mut rng);
let encoded_m_back = decrypt_lwe(&lwe_ct, &lwe_sk, &modq_op);
encrypt_lwe(
&mut lwe_ct,
&encoded_m,
&lwe_sk.values(),
&modq_op,
&mut rng,
);
let encoded_m_back = decrypt_lwe(&lwe_ct, &lwe_sk.values(), &modq_op);
let m_back = ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as f64).round()
as u64)
% (1u64 << logp);
@ -247,8 +248,8 @@ mod tests {
let mut ksk = vec![vec![0u64; lwe_out_n + 1]; d_ks * lwe_in_n];
let gadget = gadget_vector(logq, logb, d_ks);
lwe_ksk_keygen(
&lwe_sk_in,
&lwe_sk_out,
&lwe_sk_in.values(),
&lwe_sk_out.values(),
&mut ksk,
&gadget,
&modq_op,
@ -260,7 +261,13 @@ mod tests {
// encrypt using lwe_sk_in
let encoded_m = m << (logq - logp);
let mut lwe_in_ct = vec![0u64; lwe_in_n + 1];
encrypt_lwe(&mut lwe_in_ct, &encoded_m, &lwe_sk_in, &modq_op, &mut rng);
encrypt_lwe(
&mut lwe_in_ct,
&encoded_m,
lwe_sk_in.values(),
&modq_op,
&mut rng,
);
// key switch from lwe_sk_in to lwe_sk_out
let decomposer = DefaultDecomposer::new(1u64 << logq, logb, d_ks);
@ -268,7 +275,7 @@ mod tests {
lwe_key_switch(&mut lwe_out_ct, &lwe_in_ct, &ksk, &modq_op, &decomposer);
// decrypt lwe_out_ct using lwe_sk_out
let encoded_m_back = decrypt_lwe(&lwe_out_ct, &lwe_sk_out, &modq_op);
let encoded_m_back = decrypt_lwe(&lwe_out_ct, &lwe_sk_out.values(), &modq_op);
let m_back = ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as f64).round()
as u64)
% (1u64 << logp);

+ 11
- 5
src/ntt.rs

@ -2,10 +2,15 @@ use itertools::Itertools;
use rand::{thread_rng, Rng, RngCore};
use crate::{
backend::{ArithmeticOps, ModularOpsU64},
backend::{ArithmeticOps, ModInit, ModularOpsU64},
utils::{mod_exponent, mod_inverse, shoup_representation_fq},
};
pub trait NttInit {
type Element;
fn new(q: Self::Element, n: usize) -> Self;
}
pub trait Ntt {
type Element;
fn forward_lazy(&self, v: &mut [Self::Element]);
@ -195,8 +200,9 @@ pub struct NttBackendU64 {
psi_inv_powers_bo_shoup: Box<[u64]>,
}
impl NttBackendU64 {
pub fn new(q: u64, n: usize) -> Self {
impl NttInit for NttBackendU64 {
type Element = u64;
fn new(q: u64, n: usize) -> Self {
// \psi = 2n^{th} primitive root of unity in F_q
let mut rng = thread_rng();
let psi = find_primitive_root(q, (n * 2) as u64, &mut rng)
@ -325,9 +331,9 @@ mod tests {
use rand::{thread_rng, Rng};
use rand_distr::Uniform;
use super::NttBackendU64;
use super::{NttBackendU64, NttInit};
use crate::{
backend::{ModularOpsU64, VectorOps},
backend::{ArithmeticOps, ModInit, ModularOpsU64, VectorOps},
ntt::Ntt,
utils::{generate_prime, negacyclic_mul},
};

+ 17
- 9
src/rgsw.rs

@ -16,7 +16,7 @@ use crate::{
Matrix, MatrixEntity, MatrixMut, RowMut, Secret,
};
struct RlweCiphertext<M>(M, bool);
pub struct RlweCiphertext<M>(M, bool);
impl<M: Matrix> Matrix for RlweCiphertext<M> {
type MatElement = M::MatElement;
@ -58,7 +58,7 @@ pub trait IsTrivial {
fn set_not_trivial(&mut self);
}
struct RlweSecret {
pub struct RlweSecret {
values: Vec<i32>,
}
@ -70,7 +70,7 @@ impl Secret for RlweSecret {
}
impl RlweSecret {
fn random(hw: usize, n: usize) -> RlweSecret {
pub fn random(hw: usize, n: usize) -> RlweSecret {
DefaultSecureRng::with_local_mut(|rng| {
let mut out = vec![0i32; n];
fill_random_ternary_secret_with_hamming_weight(&mut out, hw, rng);
@ -80,8 +80,15 @@ impl RlweSecret {
}
}
fn generate_auto_map(ring_size: usize, k: usize) -> (Vec<usize>, Vec<bool>) {
fn generate_auto_map(ring_size: usize, k: isize) -> (Vec<usize>, Vec<bool>) {
assert!(k & 1 == 1, "Auto {k} must be odd");
// k = k % 2*N
let k = if k < 0 {
(2 * ring_size) - (k.abs() as usize)
} else {
k as usize
};
let (auto_map_index, auto_sign_index): (Vec<usize>, Vec<bool>) = (0..ring_size)
.into_iter()
.map(|i| {
@ -183,13 +190,14 @@ pub(crate) fn galois_key_gen<
>(
ksk_out: &mut Mmut,
s: &S,
auto_k: usize,
auto_k: isize,
gadget_vector: &[Mmut::MatElement],
mod_op: &ModOp,
ntt_op: &NttOp,
rng: &mut R,
) where
<Mmut as Matrix>::R: RowMut,
//FIXME(Jay): Why isn't this bound Mmut::R: given that secret is a vector (Row) not a matrix
Mmut: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
Mmut::MatElement: Copy + Sub<Output = Mmut::MatElement>,
{
@ -327,7 +335,7 @@ pub(crate) fn galois_auto<
/// RLWE'_B(-sm) || RLWE'_A(m) || RLWE'_B(m)]^T
pub(crate) fn encrypt_rgsw<
Mmut: MatrixMut + MatrixEntity,
M: Matrix<MatElement = Mmut::MatElement> + Clone,
M: Matrix<MatElement = Mmut::MatElement>,
S: Secret,
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
@ -805,9 +813,9 @@ mod tests {
use rand::{thread_rng, Rng};
use crate::{
backend::ModularOpsU64,
backend::{ModInit, ModularOpsU64},
decomposer::{gadget_vector, DefaultDecomposer},
ntt::{self, Ntt, NttBackendU64},
ntt::{self, Ntt, NttBackendU64, NttInit},
random::{DefaultSecureRng, RandomUniformDist},
rgsw::{measure_noise, RlweCiphertext},
utils::{generate_prime, negacyclic_mul},
@ -933,7 +941,7 @@ mod tests {
&mut rng,
);
let auto_k = 25;
let auto_k = -25;
// Generate galois key to key switch from s^k to s
let mut ksk_out = vec![vec![0u64; ring_size as usize]; d_rgsw * 2];

Loading…
Cancel
Save