mirror of
https://github.com/arnaucube/phantom-zone.git
synced 2026-01-09 15:41:30 +01:00
bool evaluator encrypt/decrypt and keygen works
This commit is contained in:
@@ -1,5 +1,10 @@
|
||||
use itertools::izip;
|
||||
|
||||
pub trait ModInit {
|
||||
type Element;
|
||||
fn new(q: Self::Element) -> Self;
|
||||
}
|
||||
|
||||
pub trait VectorOps {
|
||||
type Element;
|
||||
|
||||
@@ -40,8 +45,9 @@ pub struct ModularOpsU64 {
|
||||
barrett_alpha: usize,
|
||||
}
|
||||
|
||||
impl ModularOpsU64 {
|
||||
pub fn new(q: u64) -> ModularOpsU64 {
|
||||
impl ModInit for ModularOpsU64 {
|
||||
type Element = u64;
|
||||
fn new(q: u64) -> ModularOpsU64 {
|
||||
let logq = 64 - q.leading_zeros();
|
||||
|
||||
// barrett calculation
|
||||
@@ -55,7 +61,9 @@ impl ModularOpsU64 {
|
||||
barrett_mu: mu,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ModularOpsU64 {
|
||||
fn add_mod_fast(&self, a: u64, b: u64) -> u64 {
|
||||
debug_assert!(a < self.q);
|
||||
debug_assert!(b < self.q);
|
||||
|
||||
360
src/bool.rs
360
src/bool.rs
@@ -1,20 +1,19 @@
|
||||
use std::collections::HashMap;
|
||||
use std::{collections::HashMap, fmt::Debug, marker::PhantomData};
|
||||
|
||||
use num_traits::{FromPrimitive, One, PrimInt, ToPrimitive, Zero};
|
||||
use itertools::Itertools;
|
||||
use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, Zero};
|
||||
|
||||
use crate::{
|
||||
backend::{ArithmeticOps, VectorOps},
|
||||
decomposer::Decomposer,
|
||||
lwe::lwe_key_switch,
|
||||
ntt::Ntt,
|
||||
rgsw::{galois_auto, rlwe_by_rgsw, IsTrivial},
|
||||
Matrix, MatrixEntity, MatrixMut, Row, RowMut,
|
||||
backend::{ArithmeticOps, ModInit, VectorOps},
|
||||
decomposer::{gadget_vector, Decomposer, DefaultDecomposer, NumInfo},
|
||||
lwe::{decrypt_lwe, encrypt_lwe, lwe_key_switch, lwe_ksk_keygen, LweSecret},
|
||||
ntt::{Ntt, NttInit},
|
||||
random::{DefaultSecureRng, RandomGaussianDist, RandomUniformDist},
|
||||
rgsw::{encrypt_rgsw, galois_auto, galois_key_gen, rlwe_by_rgsw, IsTrivial, RlweSecret},
|
||||
utils::{generate_prime, mod_exponent, TryConvertFrom, WithLocal},
|
||||
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
||||
};
|
||||
|
||||
struct BoolEvaluator {}
|
||||
|
||||
impl BoolEvaluator {}
|
||||
|
||||
trait PbsKey {
|
||||
type M: Matrix;
|
||||
|
||||
@@ -23,6 +22,278 @@ trait PbsKey {
|
||||
fn auto_map_index(&self, k: isize) -> &[usize];
|
||||
fn auto_map_sign(&self, k: isize) -> &[bool];
|
||||
}
|
||||
trait Parameters {
|
||||
type Element;
|
||||
type D: Decomposer<Element = Self::Element>;
|
||||
fn rlwe_q(&self) -> Self::Element;
|
||||
fn lwe_q(&self) -> Self::Element;
|
||||
fn br_q(&self) -> usize;
|
||||
fn d_rgsw(&self) -> usize;
|
||||
fn d_lwe(&self) -> usize;
|
||||
fn rlwe_n(&self) -> usize;
|
||||
fn lwe_n(&self) -> usize;
|
||||
/// Embedding fator for ring X^{q}+1 inside
|
||||
fn embedding_factor(&self) -> usize;
|
||||
/// generator g
|
||||
fn g(&self) -> isize;
|
||||
fn decomoposer_lwe(&self) -> &Self::D;
|
||||
fn decomoposer_rlwe(&self) -> &Self::D;
|
||||
|
||||
/// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k =
|
||||
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
|
||||
/// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t
|
||||
/// a = -g^{k}, then k is expressed as k=k+q/2
|
||||
fn g_k_dlog_map(&self) -> &[usize];
|
||||
}
|
||||
struct ClientKey {
|
||||
sk_rlwe: RlweSecret,
|
||||
sk_lwe: LweSecret,
|
||||
}
|
||||
|
||||
struct ServerKey<M> {
|
||||
/// Rgsw cts of LWE secret elements
|
||||
rgsw_cts: Vec<M>,
|
||||
/// Galois keys
|
||||
galois_keys: HashMap<isize, M>,
|
||||
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
|
||||
lwe_ksk: M,
|
||||
}
|
||||
|
||||
struct BoolParameters<El> {
|
||||
rlwe_q: El,
|
||||
rlwe_logq: usize,
|
||||
lwe_q: El,
|
||||
lwe_logq: usize,
|
||||
br_q: usize,
|
||||
rlwe_n: usize,
|
||||
lwe_n: usize,
|
||||
d_rgsw: usize,
|
||||
logb_rgsw: usize,
|
||||
d_lwe: usize,
|
||||
logb_lwe: usize,
|
||||
g: usize,
|
||||
w: usize,
|
||||
}
|
||||
|
||||
struct BoolEvaluator<M, E, Ntt, ModOp> {
|
||||
parameters: BoolParameters<E>,
|
||||
decomposer_rlwe: DefaultDecomposer<E>,
|
||||
decomposer_lwe: DefaultDecomposer<E>,
|
||||
g_k_dlog_map: Vec<usize>,
|
||||
rlwe_nttop: Ntt,
|
||||
rlwe_modop: ModOp,
|
||||
lwe_modop: ModOp,
|
||||
embedding_factor: usize,
|
||||
|
||||
_phantom: PhantomData<M>,
|
||||
}
|
||||
|
||||
impl<M, NttOp, ModOp> BoolEvaluator<M, M::MatElement, NttOp, ModOp>
|
||||
where
|
||||
NttOp: NttInit<Element = M::MatElement> + Ntt<Element = M::MatElement>,
|
||||
ModOp: ModInit<Element = M::MatElement>
|
||||
+ ArithmeticOps<Element = M::MatElement>
|
||||
+ VectorOps<Element = M::MatElement>,
|
||||
M::MatElement: PrimInt + Debug + NumInfo + FromPrimitive,
|
||||
M: MatrixEntity + MatrixMut,
|
||||
M::R: TryConvertFrom<[i32], Parameters = M::MatElement> + RowEntity,
|
||||
M: TryConvertFrom<[i32], Parameters = M::MatElement>,
|
||||
<M as Matrix>::R: RowMut,
|
||||
DefaultSecureRng: RandomGaussianDist<[M::MatElement], Parameters = M::MatElement>
|
||||
+ RandomGaussianDist<M::MatElement, Parameters = M::MatElement>
|
||||
+ RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
|
||||
{
|
||||
fn new(parameters: BoolParameters<M::MatElement>) -> Self {
|
||||
//TODO(Jay): Run sanity checks for modulus values in parameters
|
||||
|
||||
let decomposer_rlwe =
|
||||
DefaultDecomposer::new(parameters.rlwe_q, parameters.logb_rgsw, parameters.d_rgsw);
|
||||
let decomposer_lwe =
|
||||
DefaultDecomposer::new(parameters.lwe_q, parameters.logb_lwe, parameters.d_lwe);
|
||||
|
||||
// generatr dlog map s.t. g^{k} % q = a, for all a \in Z*_{q}
|
||||
let g = parameters.g;
|
||||
let q = parameters.br_q;
|
||||
let mut g_k_dlog_map = vec![0usize; q];
|
||||
for i in 0..q / 2 {
|
||||
let v = mod_exponent(g as u64, i as u64, q as u64) as usize;
|
||||
// g^i
|
||||
g_k_dlog_map[v] = i;
|
||||
// -(g^i)
|
||||
g_k_dlog_map[q - v] = i + (q / 2);
|
||||
}
|
||||
|
||||
let embedding_factor = (2 * parameters.rlwe_n) / q;
|
||||
|
||||
let rlwe_nttop = NttOp::new(parameters.rlwe_q, parameters.rlwe_n);
|
||||
let rlwe_modop = ModInit::new(parameters.rlwe_q);
|
||||
let lwe_modop = ModInit::new(parameters.lwe_q);
|
||||
|
||||
BoolEvaluator {
|
||||
parameters: parameters,
|
||||
decomposer_lwe,
|
||||
decomposer_rlwe,
|
||||
g_k_dlog_map,
|
||||
embedding_factor,
|
||||
lwe_modop,
|
||||
rlwe_modop,
|
||||
rlwe_nttop,
|
||||
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn client_key(&self) -> ClientKey {
|
||||
let sk_lwe = LweSecret::random(self.parameters.lwe_n >> 1, self.parameters.lwe_n);
|
||||
let sk_rlwe = RlweSecret::random(self.parameters.rlwe_n >> 1, self.parameters.rlwe_n);
|
||||
ClientKey { sk_rlwe, sk_lwe }
|
||||
}
|
||||
|
||||
fn server_key(&self, client_key: &ClientKey) -> ServerKey<M> {
|
||||
let sk_rlwe = &client_key.sk_rlwe;
|
||||
let sk_lwe = &client_key.sk_lwe;
|
||||
|
||||
let d_rgsw_gadget_vec = gadget_vector(
|
||||
self.parameters.rlwe_logq,
|
||||
self.parameters.logb_rgsw,
|
||||
self.parameters.d_rgsw,
|
||||
);
|
||||
|
||||
// generate galois key -g, g
|
||||
let mut galois_keys = HashMap::new();
|
||||
let g = self.parameters.g as isize;
|
||||
for i in [g, -g] {
|
||||
let gk = DefaultSecureRng::with_local_mut(|rng| {
|
||||
let mut ksk_out = M::zeros(self.parameters.d_rgsw * 2, self.parameters.rlwe_n);
|
||||
galois_key_gen(
|
||||
&mut ksk_out,
|
||||
sk_rlwe,
|
||||
i,
|
||||
&d_rgsw_gadget_vec,
|
||||
&self.rlwe_modop,
|
||||
&self.rlwe_nttop,
|
||||
rng,
|
||||
);
|
||||
ksk_out
|
||||
});
|
||||
|
||||
galois_keys.insert(i, gk);
|
||||
}
|
||||
|
||||
// generate rgsw ciphertexts RGSW(si) where si is i^th LWE secret element
|
||||
let ring_size = self.parameters.rlwe_n;
|
||||
let rlwe_q = self.parameters.rlwe_q;
|
||||
let rgsw_cts = sk_lwe
|
||||
.values()
|
||||
.iter()
|
||||
.map(|si| {
|
||||
// X^{si}; assume |emebedding_factor * si| < N
|
||||
let mut m = M::zeros(1, ring_size);
|
||||
let si = (self.embedding_factor as i32) * si;
|
||||
if si < 0 {
|
||||
// X^{-i} = X^{2N - i} = -X^{N-i}
|
||||
m.set(
|
||||
0,
|
||||
ring_size - (si.abs() as usize),
|
||||
rlwe_q - M::MatElement::one(),
|
||||
);
|
||||
} else {
|
||||
// X^{i}
|
||||
m.set(0, (si.abs() as usize), M::MatElement::one());
|
||||
}
|
||||
self.rlwe_nttop.forward(m.get_row_mut(0));
|
||||
|
||||
let rgsw_si = DefaultSecureRng::with_local_mut(|rng| {
|
||||
let mut rgsw_si = M::zeros(self.parameters.d_rgsw * 4, ring_size);
|
||||
encrypt_rgsw(
|
||||
&mut rgsw_si,
|
||||
&m,
|
||||
&d_rgsw_gadget_vec,
|
||||
sk_rlwe,
|
||||
&self.rlwe_modop,
|
||||
&self.rlwe_nttop,
|
||||
rng,
|
||||
);
|
||||
rgsw_si
|
||||
});
|
||||
rgsw_si
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
// LWE KSK from RLWE secret s -> LWE secret z
|
||||
let d_lwe_gadget = gadget_vector(
|
||||
self.parameters.lwe_logq,
|
||||
self.parameters.logb_lwe,
|
||||
self.parameters.d_lwe,
|
||||
);
|
||||
let mut lwe_ksk = DefaultSecureRng::with_local_mut(|rng| {
|
||||
let mut out = M::zeros(self.parameters.d_lwe * ring_size, self.parameters.lwe_n + 1);
|
||||
lwe_ksk_keygen(
|
||||
&sk_rlwe.values(),
|
||||
&sk_lwe.values(),
|
||||
&mut out,
|
||||
&d_lwe_gadget,
|
||||
&self.lwe_modop,
|
||||
rng,
|
||||
);
|
||||
out
|
||||
});
|
||||
|
||||
ServerKey {
|
||||
rgsw_cts,
|
||||
galois_keys,
|
||||
lwe_ksk,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn encrypt(&self, m: bool, client_key: &ClientKey) -> M::R {
|
||||
let rlwe_q_by8 =
|
||||
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
|
||||
.unwrap();
|
||||
let m = if m {
|
||||
// Q/8
|
||||
rlwe_q_by8
|
||||
} else {
|
||||
// -Q/8
|
||||
self.parameters.rlwe_q - rlwe_q_by8
|
||||
};
|
||||
|
||||
DefaultSecureRng::with_local_mut(|rng| {
|
||||
let mut lwe_out = M::R::zeros(self.parameters.rlwe_n + 1);
|
||||
encrypt_lwe(
|
||||
&mut lwe_out,
|
||||
&m,
|
||||
client_key.sk_rlwe.values(),
|
||||
&self.rlwe_modop,
|
||||
rng,
|
||||
);
|
||||
lwe_out
|
||||
})
|
||||
}
|
||||
|
||||
pub fn decrypt(&self, lwe_ct: &M::R, client_key: &ClientKey) -> bool {
|
||||
let m = decrypt_lwe(lwe_ct, client_key.sk_rlwe.values(), &self.rlwe_modop);
|
||||
let m = {
|
||||
// m + q/8 => {0,q/4 1}
|
||||
let rlwe_q_by8 =
|
||||
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
|
||||
.unwrap();
|
||||
(((m + rlwe_q_by8).to_f64().unwrap() * 4.0) / self.parameters.rlwe_q.to_f64().unwrap())
|
||||
.round()
|
||||
.to_usize()
|
||||
.unwrap()
|
||||
% 4
|
||||
};
|
||||
|
||||
if m == 0 {
|
||||
false
|
||||
} else if m == 1 {
|
||||
true
|
||||
} else {
|
||||
panic!("Incorrect bool decryption. Got m={m} expected m to be 0 or 1")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// LMKCY+ Blind rotation
|
||||
///
|
||||
@@ -137,29 +408,6 @@ fn blind_rotation<
|
||||
});
|
||||
}
|
||||
|
||||
trait Parameters {
|
||||
type Element;
|
||||
type D: Decomposer<Element = Self::Element>;
|
||||
fn rlwe_q(&self) -> Self::Element;
|
||||
fn lwe_q(&self) -> Self::Element;
|
||||
fn br_q(&self) -> usize;
|
||||
fn d_rgsw(&self) -> usize;
|
||||
fn d_lwe(&self) -> usize;
|
||||
fn rlwe_n(&self) -> usize;
|
||||
fn lwe_n(&self) -> usize;
|
||||
// Embedding fator for ring X^{q}+1 inside
|
||||
fn embedding_factor(&self) -> usize;
|
||||
// generator g
|
||||
fn g(&self) -> isize;
|
||||
fn decomoposer_lwe(&self) -> &Self::D;
|
||||
fn decomoposer_rlwe(&self) -> &Self::D;
|
||||
/// Maps a \in Z^*_{2q} to discrete log k, with generator g (i.e. g^k =
|
||||
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
|
||||
/// For any a, k is s.t. a = g^{k}, then k is expressed as k. If k is s.t a
|
||||
/// = -g^{k/2}, then k is expressed as k=k+q/2
|
||||
fn g_k_dlog_map(&self) -> &[usize];
|
||||
}
|
||||
|
||||
/// - Mod down
|
||||
/// - key switching
|
||||
/// - mod down
|
||||
@@ -274,7 +522,6 @@ fn pbs<
|
||||
partb_trivial_rlwe[2 * index] = *v;
|
||||
});
|
||||
}
|
||||
// TODO Rotate test input
|
||||
|
||||
// blind rotate
|
||||
blind_rotation(
|
||||
@@ -358,3 +605,44 @@ fn monomial_mul<El, ModOp: ArithmeticOps<Element = El>>(
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{backend::ModularOpsU64, ntt::NttBackendU64};
|
||||
|
||||
use super::*;
|
||||
|
||||
const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
|
||||
rlwe_q: 4294957057u64,
|
||||
rlwe_logq: 32,
|
||||
lwe_q: 1 << 16,
|
||||
lwe_logq: 16,
|
||||
br_q: 1 << 9,
|
||||
rlwe_n: 1 << 10,
|
||||
lwe_n: 490,
|
||||
d_rgsw: 4,
|
||||
logb_rgsw: 7,
|
||||
d_lwe: 4,
|
||||
logb_lwe: 4,
|
||||
g: 5,
|
||||
w: 1,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn encrypt_decrypt_works() {
|
||||
// let prime = generate_prime(32, 2 * 1024, 1 << 32);
|
||||
// dbg!(prime);
|
||||
let bool_evaluator =
|
||||
BoolEvaluator::<Vec<Vec<u64>>, u64, NttBackendU64, ModularOpsU64>::new(SP_BOOL_PARAMS);
|
||||
let client_key = bool_evaluator.client_key();
|
||||
// let sever_key = bool_evaluator.server_key(&client_key);
|
||||
|
||||
let mut m = true;
|
||||
for _ in 0..1000 {
|
||||
let lwe_ct = bool_evaluator.encrypt(m, &client_key);
|
||||
let m_back = bool_evaluator.decrypt(&lwe_ct, &client_key);
|
||||
assert_eq!(m, m_back);
|
||||
m = !m;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -143,7 +143,11 @@ fn round_value<T: PrimInt>(value: T, ignore_bits: usize) -> T {
|
||||
mod tests {
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
use crate::{backend::ModularOpsU64, decomposer::round_value, utils::generate_prime};
|
||||
use crate::{
|
||||
backend::{ModInit, ModularOpsU64},
|
||||
decomposer::round_value,
|
||||
utils::generate_prime,
|
||||
};
|
||||
|
||||
use super::{Decomposer, DefaultDecomposer};
|
||||
|
||||
|
||||
10
src/lib.rs
10
src/lib.rs
@@ -77,6 +77,10 @@ pub trait Row: AsRef<[Self::Element]> {
|
||||
|
||||
pub trait RowMut: Row + AsMut<[<Self as Row>::Element]> {}
|
||||
|
||||
pub trait RowEntity: Row {
|
||||
fn zeros(col: usize) -> Self;
|
||||
}
|
||||
|
||||
trait Secret {
|
||||
type Element;
|
||||
fn values(&self) -> &[Self::Element];
|
||||
@@ -123,3 +127,9 @@ impl<T> Row for Vec<T> {
|
||||
}
|
||||
|
||||
impl<T> RowMut for Vec<T> {}
|
||||
|
||||
impl<T: Zero + Clone> RowEntity for Vec<T> {
|
||||
fn zeros(col: usize) -> Self {
|
||||
vec![T::zero(); col]
|
||||
}
|
||||
}
|
||||
|
||||
71
src/lwe.rs
71
src/lwe.rs
@@ -21,7 +21,7 @@ trait LweKeySwitchParameters {
|
||||
|
||||
trait LweCiphertext<M: Matrix> {}
|
||||
|
||||
struct LweSecret {
|
||||
pub struct LweSecret {
|
||||
values: Vec<i32>,
|
||||
}
|
||||
|
||||
@@ -33,7 +33,7 @@ impl Secret for LweSecret {
|
||||
}
|
||||
|
||||
impl LweSecret {
|
||||
fn random(hw: usize, n: usize) -> LweSecret {
|
||||
pub(crate) fn random(hw: usize, n: usize) -> LweSecret {
|
||||
DefaultSecureRng::with_local_mut(|rng| {
|
||||
let mut out = vec![0i32; n];
|
||||
fill_random_ternary_secret_with_hamming_weight(&mut out, hw, rng);
|
||||
@@ -71,38 +71,32 @@ pub(crate) fn lwe_key_switch<
|
||||
lwe_out.as_mut()[0] = out_b;
|
||||
}
|
||||
|
||||
fn lwe_ksk_keygen<
|
||||
pub fn lwe_ksk_keygen<
|
||||
Mmut: MatrixMut,
|
||||
S: Secret,
|
||||
S,
|
||||
Op: VectorOps<Element = Mmut::MatElement> + ArithmeticOps<Element = Mmut::MatElement>,
|
||||
R: RandomGaussianDist<Mmut::MatElement, Parameters = Mmut::MatElement>
|
||||
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
|
||||
>(
|
||||
from_lwe_sk: &S,
|
||||
to_lwe_sk: &S,
|
||||
from_lwe_sk: &[S],
|
||||
to_lwe_sk: &[S],
|
||||
ksk_out: &mut Mmut,
|
||||
gadget: &[Mmut::MatElement],
|
||||
operator: &Op,
|
||||
rng: &mut R,
|
||||
) where
|
||||
<Mmut as Matrix>::R: RowMut,
|
||||
Mmut::R: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
|
||||
Mmut::R: TryConvertFrom<[S], Parameters = Mmut::MatElement>,
|
||||
Mmut::MatElement: Zero + Debug,
|
||||
{
|
||||
assert!(
|
||||
ksk_out.dimension()
|
||||
== (
|
||||
from_lwe_sk.values().len() * gadget.len(),
|
||||
to_lwe_sk.values().len() + 1,
|
||||
)
|
||||
);
|
||||
assert!(ksk_out.dimension() == (from_lwe_sk.len() * gadget.len(), to_lwe_sk.len() + 1,));
|
||||
|
||||
let d = gadget.len();
|
||||
|
||||
let modulus = VectorOps::modulus(operator);
|
||||
let mut neg_sk_in_m = Mmut::R::try_convert_from(from_lwe_sk.values(), &modulus);
|
||||
let mut neg_sk_in_m = Mmut::R::try_convert_from(from_lwe_sk, &modulus);
|
||||
operator.elwise_neg_mut(neg_sk_in_m.as_mut());
|
||||
let sk_out_m = Mmut::R::try_convert_from(to_lwe_sk.values(), &modulus);
|
||||
let sk_out_m = Mmut::R::try_convert_from(to_lwe_sk, &modulus);
|
||||
|
||||
izip!(
|
||||
neg_sk_in_m.as_ref(),
|
||||
@@ -134,23 +128,23 @@ fn lwe_ksk_keygen<
|
||||
}
|
||||
|
||||
/// Encrypts encoded message m as LWE ciphertext
|
||||
fn encrypt_lwe<
|
||||
pub fn encrypt_lwe<
|
||||
Ro: Row + RowMut,
|
||||
R: RandomGaussianDist<Ro::Element, Parameters = Ro::Element>
|
||||
+ RandomUniformDist<[Ro::Element], Parameters = Ro::Element>,
|
||||
S: Secret,
|
||||
S,
|
||||
Op: ArithmeticOps<Element = Ro::Element>,
|
||||
>(
|
||||
lwe_out: &mut Ro,
|
||||
m: &Ro::Element,
|
||||
s: &S,
|
||||
s: &[S],
|
||||
operator: &Op,
|
||||
rng: &mut R,
|
||||
) where
|
||||
Ro: TryConvertFrom<[S::Element], Parameters = Ro::Element>,
|
||||
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
|
||||
Ro::Element: Zero,
|
||||
{
|
||||
let s = Ro::try_convert_from(s.values(), &operator.modulus());
|
||||
let s = Ro::try_convert_from(s, &operator.modulus());
|
||||
assert!(s.as_ref().len() == (lwe_out.as_ref().len() - 1));
|
||||
|
||||
// a*s
|
||||
@@ -168,16 +162,16 @@ fn encrypt_lwe<
|
||||
lwe_out.as_mut()[0] = b;
|
||||
}
|
||||
|
||||
fn decrypt_lwe<Ro: Row, Op: ArithmeticOps<Element = Ro::Element>, S: Secret>(
|
||||
pub fn decrypt_lwe<Ro: Row, Op: ArithmeticOps<Element = Ro::Element>, S>(
|
||||
lwe_ct: &Ro,
|
||||
s: &S,
|
||||
s: &[S],
|
||||
operator: &Op,
|
||||
) -> Ro::Element
|
||||
where
|
||||
Ro: TryConvertFrom<[S::Element], Parameters = Ro::Element>,
|
||||
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
|
||||
Ro::Element: Zero,
|
||||
{
|
||||
let s = Ro::try_convert_from(s.values(), &operator.modulus());
|
||||
let s = Ro::try_convert_from(s, &operator.modulus());
|
||||
|
||||
let mut sa = Ro::Element::zero();
|
||||
izip!(lwe_ct.as_ref().iter().skip(1), s.as_ref()).for_each(|(ai, si)| {
|
||||
@@ -193,10 +187,11 @@ where
|
||||
mod tests {
|
||||
|
||||
use crate::{
|
||||
backend::ModularOpsU64,
|
||||
backend::{ModInit, ModularOpsU64},
|
||||
decomposer::{gadget_vector, DefaultDecomposer},
|
||||
lwe::lwe_key_switch,
|
||||
random::DefaultSecureRng,
|
||||
Secret,
|
||||
};
|
||||
|
||||
use super::{decrypt_lwe, encrypt_lwe, lwe_ksk_keygen, LweSecret};
|
||||
@@ -217,8 +212,14 @@ mod tests {
|
||||
for m in 0..1u64 << logp {
|
||||
let encoded_m = m << (logq - logp);
|
||||
let mut lwe_ct = vec![0u64; lwe_n + 1];
|
||||
encrypt_lwe(&mut lwe_ct, &encoded_m, &lwe_sk, &modq_op, &mut rng);
|
||||
let encoded_m_back = decrypt_lwe(&lwe_ct, &lwe_sk, &modq_op);
|
||||
encrypt_lwe(
|
||||
&mut lwe_ct,
|
||||
&encoded_m,
|
||||
&lwe_sk.values(),
|
||||
&modq_op,
|
||||
&mut rng,
|
||||
);
|
||||
let encoded_m_back = decrypt_lwe(&lwe_ct, &lwe_sk.values(), &modq_op);
|
||||
let m_back = ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as f64).round()
|
||||
as u64)
|
||||
% (1u64 << logp);
|
||||
@@ -247,8 +248,8 @@ mod tests {
|
||||
let mut ksk = vec![vec![0u64; lwe_out_n + 1]; d_ks * lwe_in_n];
|
||||
let gadget = gadget_vector(logq, logb, d_ks);
|
||||
lwe_ksk_keygen(
|
||||
&lwe_sk_in,
|
||||
&lwe_sk_out,
|
||||
&lwe_sk_in.values(),
|
||||
&lwe_sk_out.values(),
|
||||
&mut ksk,
|
||||
&gadget,
|
||||
&modq_op,
|
||||
@@ -260,7 +261,13 @@ mod tests {
|
||||
// encrypt using lwe_sk_in
|
||||
let encoded_m = m << (logq - logp);
|
||||
let mut lwe_in_ct = vec![0u64; lwe_in_n + 1];
|
||||
encrypt_lwe(&mut lwe_in_ct, &encoded_m, &lwe_sk_in, &modq_op, &mut rng);
|
||||
encrypt_lwe(
|
||||
&mut lwe_in_ct,
|
||||
&encoded_m,
|
||||
lwe_sk_in.values(),
|
||||
&modq_op,
|
||||
&mut rng,
|
||||
);
|
||||
|
||||
// key switch from lwe_sk_in to lwe_sk_out
|
||||
let decomposer = DefaultDecomposer::new(1u64 << logq, logb, d_ks);
|
||||
@@ -268,7 +275,7 @@ mod tests {
|
||||
lwe_key_switch(&mut lwe_out_ct, &lwe_in_ct, &ksk, &modq_op, &decomposer);
|
||||
|
||||
// decrypt lwe_out_ct using lwe_sk_out
|
||||
let encoded_m_back = decrypt_lwe(&lwe_out_ct, &lwe_sk_out, &modq_op);
|
||||
let encoded_m_back = decrypt_lwe(&lwe_out_ct, &lwe_sk_out.values(), &modq_op);
|
||||
let m_back = ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as f64).round()
|
||||
as u64)
|
||||
% (1u64 << logp);
|
||||
|
||||
16
src/ntt.rs
16
src/ntt.rs
@@ -2,10 +2,15 @@ use itertools::Itertools;
|
||||
use rand::{thread_rng, Rng, RngCore};
|
||||
|
||||
use crate::{
|
||||
backend::{ArithmeticOps, ModularOpsU64},
|
||||
backend::{ArithmeticOps, ModInit, ModularOpsU64},
|
||||
utils::{mod_exponent, mod_inverse, shoup_representation_fq},
|
||||
};
|
||||
|
||||
pub trait NttInit {
|
||||
type Element;
|
||||
fn new(q: Self::Element, n: usize) -> Self;
|
||||
}
|
||||
|
||||
pub trait Ntt {
|
||||
type Element;
|
||||
fn forward_lazy(&self, v: &mut [Self::Element]);
|
||||
@@ -195,8 +200,9 @@ pub struct NttBackendU64 {
|
||||
psi_inv_powers_bo_shoup: Box<[u64]>,
|
||||
}
|
||||
|
||||
impl NttBackendU64 {
|
||||
pub fn new(q: u64, n: usize) -> Self {
|
||||
impl NttInit for NttBackendU64 {
|
||||
type Element = u64;
|
||||
fn new(q: u64, n: usize) -> Self {
|
||||
// \psi = 2n^{th} primitive root of unity in F_q
|
||||
let mut rng = thread_rng();
|
||||
let psi = find_primitive_root(q, (n * 2) as u64, &mut rng)
|
||||
@@ -325,9 +331,9 @@ mod tests {
|
||||
use rand::{thread_rng, Rng};
|
||||
use rand_distr::Uniform;
|
||||
|
||||
use super::NttBackendU64;
|
||||
use super::{NttBackendU64, NttInit};
|
||||
use crate::{
|
||||
backend::{ModularOpsU64, VectorOps},
|
||||
backend::{ArithmeticOps, ModInit, ModularOpsU64, VectorOps},
|
||||
ntt::Ntt,
|
||||
utils::{generate_prime, negacyclic_mul},
|
||||
};
|
||||
|
||||
26
src/rgsw.rs
26
src/rgsw.rs
@@ -16,7 +16,7 @@ use crate::{
|
||||
Matrix, MatrixEntity, MatrixMut, RowMut, Secret,
|
||||
};
|
||||
|
||||
struct RlweCiphertext<M>(M, bool);
|
||||
pub struct RlweCiphertext<M>(M, bool);
|
||||
|
||||
impl<M: Matrix> Matrix for RlweCiphertext<M> {
|
||||
type MatElement = M::MatElement;
|
||||
@@ -58,7 +58,7 @@ pub trait IsTrivial {
|
||||
fn set_not_trivial(&mut self);
|
||||
}
|
||||
|
||||
struct RlweSecret {
|
||||
pub struct RlweSecret {
|
||||
values: Vec<i32>,
|
||||
}
|
||||
|
||||
@@ -70,7 +70,7 @@ impl Secret for RlweSecret {
|
||||
}
|
||||
|
||||
impl RlweSecret {
|
||||
fn random(hw: usize, n: usize) -> RlweSecret {
|
||||
pub fn random(hw: usize, n: usize) -> RlweSecret {
|
||||
DefaultSecureRng::with_local_mut(|rng| {
|
||||
let mut out = vec![0i32; n];
|
||||
fill_random_ternary_secret_with_hamming_weight(&mut out, hw, rng);
|
||||
@@ -80,8 +80,15 @@ impl RlweSecret {
|
||||
}
|
||||
}
|
||||
|
||||
fn generate_auto_map(ring_size: usize, k: usize) -> (Vec<usize>, Vec<bool>) {
|
||||
fn generate_auto_map(ring_size: usize, k: isize) -> (Vec<usize>, Vec<bool>) {
|
||||
assert!(k & 1 == 1, "Auto {k} must be odd");
|
||||
|
||||
// k = k % 2*N
|
||||
let k = if k < 0 {
|
||||
(2 * ring_size) - (k.abs() as usize)
|
||||
} else {
|
||||
k as usize
|
||||
};
|
||||
let (auto_map_index, auto_sign_index): (Vec<usize>, Vec<bool>) = (0..ring_size)
|
||||
.into_iter()
|
||||
.map(|i| {
|
||||
@@ -183,13 +190,14 @@ pub(crate) fn galois_key_gen<
|
||||
>(
|
||||
ksk_out: &mut Mmut,
|
||||
s: &S,
|
||||
auto_k: usize,
|
||||
auto_k: isize,
|
||||
gadget_vector: &[Mmut::MatElement],
|
||||
mod_op: &ModOp,
|
||||
ntt_op: &NttOp,
|
||||
rng: &mut R,
|
||||
) where
|
||||
<Mmut as Matrix>::R: RowMut,
|
||||
//FIXME(Jay): Why isn't this bound Mmut::R: given that secret is a vector (Row) not a matrix
|
||||
Mmut: TryConvertFrom<[S::Element], Parameters = Mmut::MatElement>,
|
||||
Mmut::MatElement: Copy + Sub<Output = Mmut::MatElement>,
|
||||
{
|
||||
@@ -327,7 +335,7 @@ pub(crate) fn galois_auto<
|
||||
/// RLWE'_B(-sm) || RLWE'_A(m) || RLWE'_B(m)]^T
|
||||
pub(crate) fn encrypt_rgsw<
|
||||
Mmut: MatrixMut + MatrixEntity,
|
||||
M: Matrix<MatElement = Mmut::MatElement> + Clone,
|
||||
M: Matrix<MatElement = Mmut::MatElement>,
|
||||
S: Secret,
|
||||
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
|
||||
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
|
||||
@@ -805,9 +813,9 @@ mod tests {
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
use crate::{
|
||||
backend::ModularOpsU64,
|
||||
backend::{ModInit, ModularOpsU64},
|
||||
decomposer::{gadget_vector, DefaultDecomposer},
|
||||
ntt::{self, Ntt, NttBackendU64},
|
||||
ntt::{self, Ntt, NttBackendU64, NttInit},
|
||||
random::{DefaultSecureRng, RandomUniformDist},
|
||||
rgsw::{measure_noise, RlweCiphertext},
|
||||
utils::{generate_prime, negacyclic_mul},
|
||||
@@ -933,7 +941,7 @@ mod tests {
|
||||
&mut rng,
|
||||
);
|
||||
|
||||
let auto_k = 25;
|
||||
let auto_k = -25;
|
||||
|
||||
// Generate galois key to key switch from s^k to s
|
||||
let mut ksk_out = vec![vec![0u64; ring_size as usize]; d_rgsw * 2];
|
||||
|
||||
Reference in New Issue
Block a user