|
|
@ -1,20 +1,19 @@ |
|
|
|
use std::collections::HashMap;
|
|
|
|
use std::{collections::HashMap, fmt::Debug, marker::PhantomData};
|
|
|
|
|
|
|
|
use num_traits::{FromPrimitive, One, PrimInt, ToPrimitive, Zero};
|
|
|
|
use itertools::Itertools;
|
|
|
|
use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, Zero};
|
|
|
|
|
|
|
|
use crate::{
|
|
|
|
backend::{ArithmeticOps, VectorOps},
|
|
|
|
decomposer::Decomposer,
|
|
|
|
lwe::lwe_key_switch,
|
|
|
|
ntt::Ntt,
|
|
|
|
rgsw::{galois_auto, rlwe_by_rgsw, IsTrivial},
|
|
|
|
Matrix, MatrixEntity, MatrixMut, Row, RowMut,
|
|
|
|
backend::{ArithmeticOps, ModInit, VectorOps},
|
|
|
|
decomposer::{gadget_vector, Decomposer, DefaultDecomposer, NumInfo},
|
|
|
|
lwe::{decrypt_lwe, encrypt_lwe, lwe_key_switch, lwe_ksk_keygen, LweSecret},
|
|
|
|
ntt::{Ntt, NttInit},
|
|
|
|
random::{DefaultSecureRng, RandomGaussianDist, RandomUniformDist},
|
|
|
|
rgsw::{encrypt_rgsw, galois_auto, galois_key_gen, rlwe_by_rgsw, IsTrivial, RlweSecret},
|
|
|
|
utils::{generate_prime, mod_exponent, TryConvertFrom, WithLocal},
|
|
|
|
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct BoolEvaluator {}
|
|
|
|
|
|
|
|
impl BoolEvaluator {}
|
|
|
|
|
|
|
|
trait PbsKey {
|
|
|
|
type M: Matrix;
|
|
|
|
|
|
|
@ -23,6 +22,278 @@ trait PbsKey { |
|
|
|
fn auto_map_index(&self, k: isize) -> &[usize];
|
|
|
|
fn auto_map_sign(&self, k: isize) -> &[bool];
|
|
|
|
}
|
|
|
|
trait Parameters {
|
|
|
|
type Element;
|
|
|
|
type D: Decomposer<Element = Self::Element>;
|
|
|
|
fn rlwe_q(&self) -> Self::Element;
|
|
|
|
fn lwe_q(&self) -> Self::Element;
|
|
|
|
fn br_q(&self) -> usize;
|
|
|
|
fn d_rgsw(&self) -> usize;
|
|
|
|
fn d_lwe(&self) -> usize;
|
|
|
|
fn rlwe_n(&self) -> usize;
|
|
|
|
fn lwe_n(&self) -> usize;
|
|
|
|
/// Embedding fator for ring X^{q}+1 inside
|
|
|
|
fn embedding_factor(&self) -> usize;
|
|
|
|
/// generator g
|
|
|
|
fn g(&self) -> isize;
|
|
|
|
fn decomoposer_lwe(&self) -> &Self::D;
|
|
|
|
fn decomoposer_rlwe(&self) -> &Self::D;
|
|
|
|
|
|
|
|
/// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k =
|
|
|
|
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
|
|
|
|
/// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t
|
|
|
|
/// a = -g^{k}, then k is expressed as k=k+q/2
|
|
|
|
fn g_k_dlog_map(&self) -> &[usize];
|
|
|
|
}
|
|
|
|
struct ClientKey {
|
|
|
|
sk_rlwe: RlweSecret,
|
|
|
|
sk_lwe: LweSecret,
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ServerKey<M> {
|
|
|
|
/// Rgsw cts of LWE secret elements
|
|
|
|
rgsw_cts: Vec<M>,
|
|
|
|
/// Galois keys
|
|
|
|
galois_keys: HashMap<isize, M>,
|
|
|
|
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
|
|
|
|
lwe_ksk: M,
|
|
|
|
}
|
|
|
|
|
|
|
|
struct BoolParameters<El> {
|
|
|
|
rlwe_q: El,
|
|
|
|
rlwe_logq: usize,
|
|
|
|
lwe_q: El,
|
|
|
|
lwe_logq: usize,
|
|
|
|
br_q: usize,
|
|
|
|
rlwe_n: usize,
|
|
|
|
lwe_n: usize,
|
|
|
|
d_rgsw: usize,
|
|
|
|
logb_rgsw: usize,
|
|
|
|
d_lwe: usize,
|
|
|
|
logb_lwe: usize,
|
|
|
|
g: usize,
|
|
|
|
w: usize,
|
|
|
|
}
|
|
|
|
|
|
|
|
struct BoolEvaluator<M, E, Ntt, ModOp> {
|
|
|
|
parameters: BoolParameters<E>,
|
|
|
|
decomposer_rlwe: DefaultDecomposer<E>,
|
|
|
|
decomposer_lwe: DefaultDecomposer<E>,
|
|
|
|
g_k_dlog_map: Vec<usize>,
|
|
|
|
rlwe_nttop: Ntt,
|
|
|
|
rlwe_modop: ModOp,
|
|
|
|
lwe_modop: ModOp,
|
|
|
|
embedding_factor: usize,
|
|
|
|
|
|
|
|
_phantom: PhantomData<M>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<M, NttOp, ModOp> BoolEvaluator<M, M::MatElement, NttOp, ModOp>
|
|
|
|
where
|
|
|
|
NttOp: NttInit<Element = M::MatElement> + Ntt<Element = M::MatElement>,
|
|
|
|
ModOp: ModInit<Element = M::MatElement>
|
|
|
|
+ ArithmeticOps<Element = M::MatElement>
|
|
|
|
+ VectorOps<Element = M::MatElement>,
|
|
|
|
M::MatElement: PrimInt + Debug + NumInfo + FromPrimitive,
|
|
|
|
M: MatrixEntity + MatrixMut,
|
|
|
|
M::R: TryConvertFrom<[i32], Parameters = M::MatElement> + RowEntity,
|
|
|
|
M: TryConvertFrom<[i32], Parameters = M::MatElement>,
|
|
|
|
<M as Matrix>::R: RowMut,
|
|
|
|
DefaultSecureRng: RandomGaussianDist<[M::MatElement], Parameters = M::MatElement>
|
|
|
|
+ RandomGaussianDist<M::MatElement, Parameters = M::MatElement>
|
|
|
|
+ RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
|
|
|
|
{
|
|
|
|
fn new(parameters: BoolParameters<M::MatElement>) -> Self {
|
|
|
|
//TODO(Jay): Run sanity checks for modulus values in parameters
|
|
|
|
|
|
|
|
let decomposer_rlwe =
|
|
|
|
DefaultDecomposer::new(parameters.rlwe_q, parameters.logb_rgsw, parameters.d_rgsw);
|
|
|
|
let decomposer_lwe =
|
|
|
|
DefaultDecomposer::new(parameters.lwe_q, parameters.logb_lwe, parameters.d_lwe);
|
|
|
|
|
|
|
|
// generatr dlog map s.t. g^{k} % q = a, for all a \in Z*_{q}
|
|
|
|
let g = parameters.g;
|
|
|
|
let q = parameters.br_q;
|
|
|
|
let mut g_k_dlog_map = vec![0usize; q];
|
|
|
|
for i in 0..q / 2 {
|
|
|
|
let v = mod_exponent(g as u64, i as u64, q as u64) as usize;
|
|
|
|
// g^i
|
|
|
|
g_k_dlog_map[v] = i;
|
|
|
|
// -(g^i)
|
|
|
|
g_k_dlog_map[q - v] = i + (q / 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
let embedding_factor = (2 * parameters.rlwe_n) / q;
|
|
|
|
|
|
|
|
let rlwe_nttop = NttOp::new(parameters.rlwe_q, parameters.rlwe_n);
|
|
|
|
let rlwe_modop = ModInit::new(parameters.rlwe_q);
|
|
|
|
let lwe_modop = ModInit::new(parameters.lwe_q);
|
|
|
|
|
|
|
|
BoolEvaluator {
|
|
|
|
parameters: parameters,
|
|
|
|
decomposer_lwe,
|
|
|
|
decomposer_rlwe,
|
|
|
|
g_k_dlog_map,
|
|
|
|
embedding_factor,
|
|
|
|
lwe_modop,
|
|
|
|
rlwe_modop,
|
|
|
|
rlwe_nttop,
|
|
|
|
|
|
|
|
_phantom: PhantomData,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn client_key(&self) -> ClientKey {
|
|
|
|
let sk_lwe = LweSecret::random(self.parameters.lwe_n >> 1, self.parameters.lwe_n);
|
|
|
|
let sk_rlwe = RlweSecret::random(self.parameters.rlwe_n >> 1, self.parameters.rlwe_n);
|
|
|
|
ClientKey { sk_rlwe, sk_lwe }
|
|
|
|
}
|
|
|
|
|
|
|
|
fn server_key(&self, client_key: &ClientKey) -> ServerKey<M> {
|
|
|
|
let sk_rlwe = &client_key.sk_rlwe;
|
|
|
|
let sk_lwe = &client_key.sk_lwe;
|
|
|
|
|
|
|
|
let d_rgsw_gadget_vec = gadget_vector(
|
|
|
|
self.parameters.rlwe_logq,
|
|
|
|
self.parameters.logb_rgsw,
|
|
|
|
self.parameters.d_rgsw,
|
|
|
|
);
|
|
|
|
|
|
|
|
// generate galois key -g, g
|
|
|
|
let mut galois_keys = HashMap::new();
|
|
|
|
let g = self.parameters.g as isize;
|
|
|
|
for i in [g, -g] {
|
|
|
|
let gk = DefaultSecureRng::with_local_mut(|rng| {
|
|
|
|
let mut ksk_out = M::zeros(self.parameters.d_rgsw * 2, self.parameters.rlwe_n);
|
|
|
|
galois_key_gen(
|
|
|
|
&mut ksk_out,
|
|
|
|
sk_rlwe,
|
|
|
|
i,
|
|
|
|
&d_rgsw_gadget_vec,
|
|
|
|
&self.rlwe_modop,
|
|
|
|
&self.rlwe_nttop,
|
|
|
|
rng,
|
|
|
|
);
|
|
|
|
ksk_out
|
|
|
|
});
|
|
|
|
|
|
|
|
galois_keys.insert(i, gk);
|
|
|
|
}
|
|
|
|
|
|
|
|
// generate rgsw ciphertexts RGSW(si) where si is i^th LWE secret element
|
|
|
|
let ring_size = self.parameters.rlwe_n;
|
|
|
|
let rlwe_q = self.parameters.rlwe_q;
|
|
|
|
let rgsw_cts = sk_lwe
|
|
|
|
.values()
|
|
|
|
.iter()
|
|
|
|
.map(|si| {
|
|
|
|
// X^{si}; assume |emebedding_factor * si| < N
|
|
|
|
let mut m = M::zeros(1, ring_size);
|
|
|
|
let si = (self.embedding_factor as i32) * si;
|
|
|
|
if si < 0 {
|
|
|
|
// X^{-i} = X^{2N - i} = -X^{N-i}
|
|
|
|
m.set(
|
|
|
|
0,
|
|
|
|
ring_size - (si.abs() as usize),
|
|
|
|
rlwe_q - M::MatElement::one(),
|
|
|
|
);
|
|
|
|
} else {
|
|
|
|
// X^{i}
|
|
|
|
m.set(0, (si.abs() as usize), M::MatElement::one());
|
|
|
|
}
|
|
|
|
self.rlwe_nttop.forward(m.get_row_mut(0));
|
|
|
|
|
|
|
|
let rgsw_si = DefaultSecureRng::with_local_mut(|rng| {
|
|
|
|
let mut rgsw_si = M::zeros(self.parameters.d_rgsw * 4, ring_size);
|
|
|
|
encrypt_rgsw(
|
|
|
|
&mut rgsw_si,
|
|
|
|
&m,
|
|
|
|
&d_rgsw_gadget_vec,
|
|
|
|
sk_rlwe,
|
|
|
|
&self.rlwe_modop,
|
|
|
|
&self.rlwe_nttop,
|
|
|
|
rng,
|
|
|
|
);
|
|
|
|
rgsw_si
|
|
|
|
});
|
|
|
|
rgsw_si
|
|
|
|
})
|
|
|
|
.collect_vec();
|
|
|
|
|
|
|
|
// LWE KSK from RLWE secret s -> LWE secret z
|
|
|
|
let d_lwe_gadget = gadget_vector(
|
|
|
|
self.parameters.lwe_logq,
|
|
|
|
self.parameters.logb_lwe,
|
|
|
|
self.parameters.d_lwe,
|
|
|
|
);
|
|
|
|
let mut lwe_ksk = DefaultSecureRng::with_local_mut(|rng| {
|
|
|
|
let mut out = M::zeros(self.parameters.d_lwe * ring_size, self.parameters.lwe_n + 1);
|
|
|
|
lwe_ksk_keygen(
|
|
|
|
&sk_rlwe.values(),
|
|
|
|
&sk_lwe.values(),
|
|
|
|
&mut out,
|
|
|
|
&d_lwe_gadget,
|
|
|
|
&self.lwe_modop,
|
|
|
|
rng,
|
|
|
|
);
|
|
|
|
out
|
|
|
|
});
|
|
|
|
|
|
|
|
ServerKey {
|
|
|
|
rgsw_cts,
|
|
|
|
galois_keys,
|
|
|
|
lwe_ksk,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn encrypt(&self, m: bool, client_key: &ClientKey) -> M::R {
|
|
|
|
let rlwe_q_by8 =
|
|
|
|
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
|
|
|
|
.unwrap();
|
|
|
|
let m = if m {
|
|
|
|
// Q/8
|
|
|
|
rlwe_q_by8
|
|
|
|
} else {
|
|
|
|
// -Q/8
|
|
|
|
self.parameters.rlwe_q - rlwe_q_by8
|
|
|
|
};
|
|
|
|
|
|
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
|
|
let mut lwe_out = M::R::zeros(self.parameters.rlwe_n + 1);
|
|
|
|
encrypt_lwe(
|
|
|
|
&mut lwe_out,
|
|
|
|
&m,
|
|
|
|
client_key.sk_rlwe.values(),
|
|
|
|
&self.rlwe_modop,
|
|
|
|
rng,
|
|
|
|
);
|
|
|
|
lwe_out
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn decrypt(&self, lwe_ct: &M::R, client_key: &ClientKey) -> bool {
|
|
|
|
let m = decrypt_lwe(lwe_ct, client_key.sk_rlwe.values(), &self.rlwe_modop);
|
|
|
|
let m = {
|
|
|
|
// m + q/8 => {0,q/4 1}
|
|
|
|
let rlwe_q_by8 =
|
|
|
|
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
|
|
|
|
.unwrap();
|
|
|
|
(((m + rlwe_q_by8).to_f64().unwrap() * 4.0) / self.parameters.rlwe_q.to_f64().unwrap())
|
|
|
|
.round()
|
|
|
|
.to_usize()
|
|
|
|
.unwrap()
|
|
|
|
% 4
|
|
|
|
};
|
|
|
|
|
|
|
|
if m == 0 {
|
|
|
|
false
|
|
|
|
} else if m == 1 {
|
|
|
|
true
|
|
|
|
} else {
|
|
|
|
panic!("Incorrect bool decryption. Got m={m} expected m to be 0 or 1")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// LMKCY+ Blind rotation
|
|
|
|
///
|
|
|
@ -137,29 +408,6 @@ fn blind_rotation< |
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
trait Parameters {
|
|
|
|
type Element;
|
|
|
|
type D: Decomposer<Element = Self::Element>;
|
|
|
|
fn rlwe_q(&self) -> Self::Element;
|
|
|
|
fn lwe_q(&self) -> Self::Element;
|
|
|
|
fn br_q(&self) -> usize;
|
|
|
|
fn d_rgsw(&self) -> usize;
|
|
|
|
fn d_lwe(&self) -> usize;
|
|
|
|
fn rlwe_n(&self) -> usize;
|
|
|
|
fn lwe_n(&self) -> usize;
|
|
|
|
// Embedding fator for ring X^{q}+1 inside
|
|
|
|
fn embedding_factor(&self) -> usize;
|
|
|
|
// generator g
|
|
|
|
fn g(&self) -> isize;
|
|
|
|
fn decomoposer_lwe(&self) -> &Self::D;
|
|
|
|
fn decomoposer_rlwe(&self) -> &Self::D;
|
|
|
|
/// Maps a \in Z^*_{2q} to discrete log k, with generator g (i.e. g^k =
|
|
|
|
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
|
|
|
|
/// For any a, k is s.t. a = g^{k}, then k is expressed as k. If k is s.t a
|
|
|
|
/// = -g^{k/2}, then k is expressed as k=k+q/2
|
|
|
|
fn g_k_dlog_map(&self) -> &[usize];
|
|
|
|
}
|
|
|
|
|
|
|
|
/// - Mod down
|
|
|
|
/// - key switching
|
|
|
|
/// - mod down
|
|
|
@ -274,7 +522,6 @@ fn pbs< |
|
|
|
partb_trivial_rlwe[2 * index] = *v;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
// TODO Rotate test input
|
|
|
|
|
|
|
|
// blind rotate
|
|
|
|
blind_rotation(
|
|
|
@ -358,3 +605,44 @@ fn monomial_mul>( |
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use crate::{backend::ModularOpsU64, ntt::NttBackendU64};
|
|
|
|
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
|
|
|
|
rlwe_q: 4294957057u64,
|
|
|
|
rlwe_logq: 32,
|
|
|
|
lwe_q: 1 << 16,
|
|
|
|
lwe_logq: 16,
|
|
|
|
br_q: 1 << 9,
|
|
|
|
rlwe_n: 1 << 10,
|
|
|
|
lwe_n: 490,
|
|
|
|
d_rgsw: 4,
|
|
|
|
logb_rgsw: 7,
|
|
|
|
d_lwe: 4,
|
|
|
|
logb_lwe: 4,
|
|
|
|
g: 5,
|
|
|
|
w: 1,
|
|
|
|
};
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn encrypt_decrypt_works() {
|
|
|
|
// let prime = generate_prime(32, 2 * 1024, 1 << 32);
|
|
|
|
// dbg!(prime);
|
|
|
|
let bool_evaluator =
|
|
|
|
BoolEvaluator::<Vec<Vec<u64>>, u64, NttBackendU64, ModularOpsU64>::new(SP_BOOL_PARAMS);
|
|
|
|
let client_key = bool_evaluator.client_key();
|
|
|
|
// let sever_key = bool_evaluator.server_key(&client_key);
|
|
|
|
|
|
|
|
let mut m = true;
|
|
|
|
for _ in 0..1000 {
|
|
|
|
let lwe_ct = bool_evaluator.encrypt(m, &client_key);
|
|
|
|
let m_back = bool_evaluator.decrypt(&lwe_ct, &client_key);
|
|
|
|
assert_eq!(m, m_back);
|
|
|
|
m = !m;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|