Browse Source

move keys into different file

par-agg-key-shares
Janmajaya Mall 10 months ago
parent
commit
4a0d96d7a4
7 changed files with 947 additions and 976 deletions
  1. +103
    -948
      src/bool/evaluator.rs
  2. +661
    -0
      src/bool/keys.rs
  3. +172
    -0
      src/bool/mod.rs
  4. +2
    -2
      src/bool/parameters.rs
  5. +1
    -1
      src/pbs.rs
  6. +6
    -11
      src/shortint/mod.rs
  7. +2
    -14
      src/shortint/ops.rs

+ 103
- 948
src/bool/evaluator.rs
File diff suppressed because it is too large
View File


+ 661
- 0
src/bool/keys.rs

@ -0,0 +1,661 @@
use std::{collections::HashMap, hash::Hash, marker::PhantomData};
use crate::{
backend::{ModInit, VectorOps},
lwe::LweSecret,
random::{NewWithSeed, RandomFillUniformInModulus},
rgsw::RlweSecret,
utils::WithLocal,
Decryptor, Encryptor, Matrix, MatrixEntity, MatrixMut, MultiPartyDecryptor, RowEntity, RowMut,
};
use super::{parameters, BoolEvaluator, BoolParameters, CiphertextModulus};
/// Client key with RLWE and LWE secrets
#[derive(Clone)]
pub struct ClientKey {
sk_rlwe: RlweSecret,
sk_lwe: LweSecret,
}
mod impl_ck {
use super::*;
// Client key
impl ClientKey {
pub(in super::super) fn random() -> Self {
let sk_rlwe = RlweSecret::random(0, 0);
let sk_lwe = LweSecret::random(0, 0);
Self { sk_rlwe, sk_lwe }
}
pub(in super::super) fn new(sk_rlwe: RlweSecret, sk_lwe: LweSecret) -> Self {
Self { sk_rlwe, sk_lwe }
}
pub(in super::super) fn sk_rlwe(&self) -> &RlweSecret {
&self.sk_rlwe
}
pub(in super::super) fn sk_lwe(&self) -> &LweSecret {
&self.sk_lwe
}
}
impl Encryptor<bool, Vec<u64>> for ClientKey {
fn encrypt(&self, m: &bool) -> Vec<u64> {
BoolEvaluator::with_local(|e| e.sk_encrypt(*m, self))
}
}
impl Decryptor<bool, Vec<u64>> for ClientKey {
fn decrypt(&self, c: &Vec<u64>) -> bool {
BoolEvaluator::with_local(|e| e.sk_decrypt(c, self))
}
}
impl MultiPartyDecryptor<bool, Vec<u64>> for ClientKey {
type DecryptionShare = u64;
fn gen_decryption_share(&self, c: &Vec<u64>) -> Self::DecryptionShare {
BoolEvaluator::with_local(|e| e.multi_party_decryption_share(c, &self))
}
fn aggregate_decryption_shares(
&self,
c: &Vec<u64>,
shares: &[Self::DecryptionShare],
) -> bool {
BoolEvaluator::with_local(|e| e.multi_party_decrypt(shares, c))
}
}
}
/// Public key
pub struct PublicKey<M, Rng, ModOp> {
key: M,
_phantom: PhantomData<(Rng, ModOp)>,
}
pub(super) mod impl_pk {
use super::*;
impl<M, R, Mo> PublicKey<M, R, Mo> {
pub(in super::super) fn key(&self) -> &M {
&self.key
}
}
impl<Rng, ModOp> Encryptor<bool, Vec<u64>> for PublicKey<Vec<Vec<u64>>, Rng, ModOp> {
fn encrypt(&self, m: &bool) -> Vec<u64> {
BoolEvaluator::with_local(|e| e.pk_encrypt(&self.key, *m))
}
}
impl<Rng, ModOp> Encryptor<[bool], Vec<Vec<u64>>> for PublicKey<Vec<Vec<u64>>, Rng, ModOp> {
fn encrypt(&self, m: &[bool]) -> Vec<Vec<u64>> {
BoolEvaluator::with_local(|e| e.pk_encrypt_batched(&self.key, m))
}
}
impl<
M: MatrixMut + MatrixEntity,
Rng: NewWithSeed
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
ModOp,
> From<SeededPublicKey<M::R, Rng::Seed, BoolParameters<M::MatElement>, ModOp>>
for PublicKey<M, Rng, ModOp>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
{
fn from(
value: SeededPublicKey<M::R, Rng::Seed, BoolParameters<M::MatElement>, ModOp>,
) -> Self {
let mut prng = Rng::new_with_seed(value.seed);
let mut key = M::zeros(2, value.parameters.rlwe_n().0);
// sample A
RandomFillUniformInModulus::random_fill(
&mut prng,
value.parameters.rlwe_q(),
key.get_row_mut(0),
);
// Copy over B
key.get_row_mut(1).copy_from_slice(value.part_b.as_ref());
PublicKey {
key,
_phantom: PhantomData,
}
}
}
impl<
M: MatrixMut + MatrixEntity,
Rng: NewWithSeed
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
ModOp: VectorOps<Element = M::MatElement> + ModInit<M = CiphertextModulus<M::MatElement>>,
>
From<
&[CommonReferenceSeededCollectivePublicKeyShare<
M::R,
Rng::Seed,
BoolParameters<M::MatElement>,
>],
> for PublicKey<M, Rng, ModOp>
where
<M as Matrix>::R: RowMut,
Rng::Seed: Copy + PartialEq,
M::MatElement: PartialEq + Copy,
{
fn from(
value: &[CommonReferenceSeededCollectivePublicKeyShare<
M::R,
Rng::Seed,
BoolParameters<M::MatElement>,
>],
) -> Self {
assert!(value.len() > 0);
let parameters = &value[0].parameters;
let mut key = M::zeros(2, parameters.rlwe_n().0);
// sample A
let seed = value[0].cr_seed;
let mut main_rng = Rng::new_with_seed(seed);
RandomFillUniformInModulus::random_fill(
&mut main_rng,
parameters.rlwe_q(),
key.get_row_mut(0),
);
// Sum all Bs
let rlweq_modop = ModOp::new(parameters.rlwe_q().clone());
value.iter().for_each(|share_i| {
assert!(share_i.cr_seed == seed);
assert!(&share_i.parameters == parameters);
rlweq_modop.elwise_add_mut(key.get_row_mut(1), share_i.share.as_ref());
});
PublicKey {
key,
_phantom: PhantomData,
}
}
}
}
/// Seeded public key
struct SeededPublicKey<Ro, S, P, ModOp> {
part_b: Ro,
seed: S,
parameters: P,
_phantom: PhantomData<ModOp>,
}
mod impl_seeded_pk {
use super::*;
impl<R, S, ModOp>
From<&[CommonReferenceSeededCollectivePublicKeyShare<R, S, BoolParameters<R::Element>>]>
for SeededPublicKey<R, S, BoolParameters<R::Element>, ModOp>
where
ModOp: VectorOps<Element = R::Element> + ModInit<M = CiphertextModulus<R::Element>>,
S: PartialEq + Clone,
R: RowMut + RowEntity + Clone,
R::Element: Clone + PartialEq,
{
fn from(
value: &[CommonReferenceSeededCollectivePublicKeyShare<
R,
S,
BoolParameters<R::Element>,
>],
) -> Self {
assert!(value.len() > 0);
let parameters = &value[0].parameters;
let cr_seed = value[0].cr_seed.clone();
// Sum all Bs
let rlweq_modop = ModOp::new(parameters.rlwe_q().clone());
let mut part_b = value[0].share.clone();
value.iter().skip(1).for_each(|share_i| {
assert!(&share_i.cr_seed == &cr_seed);
assert!(&share_i.parameters == parameters);
rlweq_modop.elwise_add_mut(part_b.as_mut(), share_i.share.as_ref());
});
Self {
part_b,
seed: cr_seed,
parameters: parameters.clone(),
_phantom: PhantomData,
}
}
}
}
/// CRS seeded collective public key share
pub struct CommonReferenceSeededCollectivePublicKeyShare<Ro, S, P> {
share: Ro,
cr_seed: S,
parameters: P,
}
impl<Ro, S, P> CommonReferenceSeededCollectivePublicKeyShare<Ro, S, P> {
pub(super) fn new(share: Ro, cr_seed: S, parameters: P) -> Self {
CommonReferenceSeededCollectivePublicKeyShare {
share,
cr_seed,
parameters,
}
}
}
/// CRS seeded Multi-party server key share
pub struct CommonReferenceSeededMultiPartyServerKeyShare<M: Matrix, P, S> {
rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
/// Common reference seed
cr_seed: S,
parameters: P,
}
impl<M: Matrix, P, S> CommonReferenceSeededMultiPartyServerKeyShare<M, P, S> {
pub(super) fn new(
rgsw_cts: Vec<M>,
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
cr_seed: S,
parameters: P,
) -> Self {
CommonReferenceSeededMultiPartyServerKeyShare {
rgsw_cts,
auto_keys,
lwe_ksk,
cr_seed,
parameters,
}
}
pub(super) fn cr_seed(&self) -> &S {
&self.cr_seed
}
pub(super) fn parameters(&self) -> &P {
&self.parameters
}
pub(super) fn auto_keys(&self) -> &HashMap<usize, M> {
&self.auto_keys
}
pub(super) fn rgsw_cts(&self) -> &[M] {
&self.rgsw_cts
}
pub(super) fn lwe_ksk(&self) -> &M::R {
&self.lwe_ksk
}
}
/// CRS seeded MultiParty server key
pub struct SeededMultiPartyServerKey<M: Matrix, S, P> {
rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
cr_seed: S,
parameters: P,
}
impl<M: Matrix, S, P> SeededMultiPartyServerKey<M, S, P> {
pub(super) fn new(
rgsw_cts: Vec<M>,
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
cr_seed: S,
parameters: P,
) -> Self {
SeededMultiPartyServerKey {
rgsw_cts,
auto_keys,
lwe_ksk,
cr_seed,
parameters,
}
}
pub(super) fn rgsw_cts(&self) -> &[M] {
&self.rgsw_cts
}
}
/// Seeded single party server key
pub struct SeededServerKey<M: Matrix, P, S> {
/// Rgsw cts of LWE secret elements
pub(crate) rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
pub(crate) auto_keys: HashMap<usize, M>,
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
pub(crate) lwe_ksk: M::R,
/// Parameters
pub(crate) parameters: P,
/// Main seed
pub(crate) seed: S,
}
impl<M: Matrix, S> SeededServerKey<M, BoolParameters<M::MatElement>, S> {
pub(super) fn from_raw(
auto_keys: HashMap<usize, M>,
rgsw_cts: Vec<M>,
lwe_ksk: M::R,
parameters: BoolParameters<M::MatElement>,
seed: S,
) -> Self {
// sanity checks
auto_keys.iter().for_each(|v| {
assert!(
v.1.dimension()
== (
parameters.auto_decomposition_count().0,
parameters.rlwe_n().0
)
)
});
let (part_a_d, part_b_d) = parameters.rlwe_rgsw_decomposition_count();
rgsw_cts.iter().for_each(|v| {
assert!(v.dimension() == (part_a_d.0 * 2 + part_b_d.0, parameters.rlwe_n().0))
});
assert!(
lwe_ksk.as_ref().len()
== (parameters.lwe_decomposition_count().0 * parameters.rlwe_n().0)
);
SeededServerKey {
rgsw_cts,
auto_keys,
lwe_ksk,
parameters,
seed,
}
}
}
/// Server key in evaluation domain
pub(crate) struct ServerKeyEvaluationDomain<M, R, N> {
/// Rgsw cts of LWE secret elements
rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
galois_keys: HashMap<usize, M>,
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
lwe_ksk: M,
_phanton: PhantomData<(R, N)>,
}
pub(super) mod impl_server_key_eval_domain {
use itertools::{izip, Itertools};
use crate::{
ntt::{Ntt, NttInit},
pbs::PbsKey,
};
use super::*;
impl<M, R, N> ServerKeyEvaluationDomain<M, R, N> {
pub(in super::super) fn rgsw_cts(&self) -> &[M] {
&self.rgsw_cts
}
}
impl<
M: MatrixMut + MatrixEntity,
R: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>
+ NewWithSeed,
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
> From<&SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>>
for ServerKeyEvaluationDomain<M, R, N>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
R::Seed: Clone,
{
fn from(value: &SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>) -> Self {
let mut main_prng = R::new_with_seed(value.seed.clone());
let parameters = &value.parameters;
let g = parameters.g() as isize;
let ring_size = value.parameters.rlwe_n().0;
let lwe_n = value.parameters.lwe_n().0;
let rlwe_q = value.parameters.rlwe_q();
let lwq_q = value.parameters.lwe_q();
let nttop = N::new(rlwe_q, ring_size);
// galois keys
let mut auto_keys = HashMap::new();
let auto_decomp_count = parameters.auto_decomposition_count().0;
let auto_element_dlogs = parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
let seeded_auto_key = value.auto_keys.get(&i).unwrap();
assert!(seeded_auto_key.dimension() == (auto_decomp_count, ring_size));
let mut data = M::zeros(auto_decomp_count * 2, ring_size);
// sample RLWE'_A(-s(X^k))
data.iter_rows_mut().take(auto_decomp_count).for_each(|ri| {
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
});
// copy over RLWE'B_(-s(X^k))
izip!(
data.iter_rows_mut().skip(auto_decomp_count),
seeded_auto_key.iter_rows()
)
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// Send to Evaluation domain
data.iter_rows_mut()
.for_each(|ri| nttop.forward(ri.as_mut()));
auto_keys.insert(i, data);
}
// RGSW ciphertexts
let (rlrg_a_decomp, rlrg_b_decomp) = parameters.rlwe_rgsw_decomposition_count();
let rgsw_cts = value
.rgsw_cts
.iter()
.map(|seeded_rgsw_si| {
assert!(
seeded_rgsw_si.dimension()
== (rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0, ring_size)
);
let mut data = M::zeros(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0 * 2, ring_size);
// copy over RLWE'(-sm)
izip!(
data.iter_rows_mut().take(rlrg_a_decomp.0 * 2),
seeded_rgsw_si.iter_rows().take(rlrg_a_decomp.0 * 2)
)
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// sample RLWE'_A(m)
data.iter_rows_mut()
.skip(rlrg_a_decomp.0 * 2)
.take(rlrg_b_decomp.0)
.for_each(|ri| {
RandomFillUniformInModulus::random_fill(
&mut main_prng,
&rlwe_q,
ri.as_mut(),
)
});
// copy over RLWE'_B(m)
izip!(
data.iter_rows_mut()
.skip(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0),
seeded_rgsw_si.iter_rows().skip(rlrg_a_decomp.0 * 2)
)
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// send polynomials to evaluation domain
data.iter_rows_mut()
.for_each(|ri| nttop.forward(ri.as_mut()));
data
})
.collect_vec();
// LWE ksk
let lwe_ksk = {
let d = parameters.lwe_decomposition_count().0;
assert!(value.lwe_ksk.as_ref().len() == d * ring_size);
let mut data = M::zeros(d * ring_size, lwe_n + 1);
izip!(data.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(
|(lwe_i, bi)| {
RandomFillUniformInModulus::random_fill(
&mut main_prng,
&lwq_q,
&mut lwe_i.as_mut()[1..],
);
lwe_i.as_mut()[0] = *bi;
},
);
data
};
ServerKeyEvaluationDomain {
rgsw_cts,
galois_keys: auto_keys,
lwe_ksk,
_phanton: PhantomData,
}
}
}
impl<
M: MatrixMut + MatrixEntity,
Rng: NewWithSeed,
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
> From<&SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>>
for ServerKeyEvaluationDomain<M, Rng, N>
where
<M as Matrix>::R: RowMut,
Rng::Seed: Copy,
Rng: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
M::MatElement: Copy,
{
fn from(
value: &SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>,
) -> Self {
let g = value.parameters.g() as isize;
let rlwe_n = value.parameters.rlwe_n().0;
let lwe_n = value.parameters.lwe_n().0;
let rlwe_q = value.parameters.rlwe_q();
let lwe_q = value.parameters.lwe_q();
let mut main_prng = Rng::new_with_seed(value.cr_seed);
let rlwe_nttop = N::new(rlwe_q, rlwe_n);
// auto keys
let mut auto_keys = HashMap::new();
let auto_d_count = value.parameters.auto_decomposition_count().0;
let auto_element_dlogs = value.parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
let mut key = M::zeros(auto_d_count * 2, rlwe_n);
// sample a
key.iter_rows_mut().take(auto_d_count).for_each(|ri| {
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
});
let key_part_b = value.auto_keys.get(&i).unwrap();
assert!(key_part_b.dimension() == (auto_d_count, rlwe_n));
izip!(
key.iter_rows_mut().skip(auto_d_count),
key_part_b.iter_rows()
)
.for_each(|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
});
// send to evaluation domain
key.iter_rows_mut()
.for_each(|ri| rlwe_nttop.forward(ri.as_mut()));
auto_keys.insert(i, key);
}
// rgsw cts
let (rlrg_d_a, rlrg_d_b) = value.parameters.rlwe_rgsw_decomposition_count();
let rgsw_ct_out = rlrg_d_a.0 * 2 + rlrg_d_b.0 * 2;
let rgsw_cts = value
.rgsw_cts
.iter()
.map(|ct_i_in| {
assert!(ct_i_in.dimension() == (rgsw_ct_out, rlwe_n));
let mut eval_ct_i_out = M::zeros(rgsw_ct_out, rlwe_n);
izip!(eval_ct_i_out.iter_rows_mut(), ct_i_in.iter_rows()).for_each(
|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
rlwe_nttop.forward(to_ri.as_mut());
},
);
eval_ct_i_out
})
.collect_vec();
// lwe ksk
let d_lwe = value.parameters.lwe_decomposition_count().0;
let mut lwe_ksk = M::zeros(rlwe_n * d_lwe, lwe_n + 1);
izip!(lwe_ksk.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(
|(lwe_i, bi)| {
RandomFillUniformInModulus::random_fill(
&mut main_prng,
&lwe_q,
&mut lwe_i.as_mut()[1..],
);
lwe_i.as_mut()[0] = *bi;
},
);
ServerKeyEvaluationDomain {
rgsw_cts,
galois_keys: auto_keys,
lwe_ksk,
_phanton: PhantomData,
}
}
}
impl<M: Matrix, R, N> PbsKey for ServerKeyEvaluationDomain<M, R, N> {
type M = M;
fn galois_key_for_auto(&self, k: usize) -> &Self::M {
self.galois_keys.get(&k).unwrap()
}
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M {
&self.rgsw_cts[si]
}
fn lwe_ksk(&self) -> &Self::M {
&self.lwe_ksk
}
}
}

+ 172
- 0
src/bool/mod.rs

@ -1,4 +1,176 @@
pub(crate) mod evaluator; pub(crate) mod evaluator;
pub(crate) mod keys;
pub(crate) mod parameters; pub(crate) mod parameters;
pub type FheBool = Vec<u64>; pub type FheBool = Vec<u64>;
use std::{cell::RefCell, sync::OnceLock};
use evaluator::*;
use keys::*;
use parameters::*;
use crate::{
backend::ModularOpsU64,
ntt::NttBackendU64,
random::{DefaultSecureRng, NewWithSeed},
utils::{Global, WithLocal},
};
thread_local! {
static BOOL_EVALUATOR: RefCell<BoolEvaluator<Vec<Vec<u64>>, NttBackendU64, ModularOpsU64<CiphertextModulus<u64>>, ModularOpsU64<CiphertextModulus<u64>>>> = RefCell::new(BoolEvaluator::new(MP_BOOL_PARAMS));
}
static BOOL_SERVER_KEY: OnceLock<
ServerKeyEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64>,
> = OnceLock::new();
static MULTI_PARTY_CRS: OnceLock<MultiPartyCrs<[u8; 32]>> = OnceLock::new();
pub fn set_parameter_set(parameter: &BoolParameters<u64>) {
BoolEvaluator::with_local_mut(|e| *e = BoolEvaluator::new(parameter.clone()))
}
pub fn set_mp_seed(seed: [u8; 32]) {
assert!(
MULTI_PARTY_CRS.set(MultiPartyCrs { seed: seed }).is_ok(),
"Attempted to set MP SEED twice."
)
}
fn set_server_key(key: ServerKeyEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64>) {
assert!(
BOOL_SERVER_KEY.set(key).is_ok(),
"Attempted to set server key twice."
);
}
pub(crate) fn gen_keys() -> (
ClientKey,
SeededServerKey<Vec<Vec<u64>>, BoolParameters<u64>, [u8; 32]>,
) {
BoolEvaluator::with_local_mut(|e| {
let ck = e.client_key();
let sk = e.server_key(&ck);
(ck, sk)
})
}
pub fn gen_client_key() -> ClientKey {
BoolEvaluator::with_local(|e| e.client_key())
}
pub fn gen_mp_keys_phase1(
ck: &ClientKey,
) -> CommonReferenceSeededCollectivePublicKeyShare<Vec<u64>, [u8; 32], BoolParameters<u64>> {
let seed = MultiPartyCrs::global().public_key_share_seed::<DefaultSecureRng>();
BoolEvaluator::with_local(|e| {
let pk_share = e.multi_party_public_key_share(seed, &ck);
pk_share
})
}
pub fn gen_mp_keys_phase2<R, ModOp>(
ck: &ClientKey,
pk: &PublicKey<Vec<Vec<u64>>, R, ModOp>,
) -> CommonReferenceSeededMultiPartyServerKeyShare<Vec<Vec<u64>>, BoolParameters<u64>, [u8; 32]> {
let seed = MultiPartyCrs::global().server_key_share_seed::<DefaultSecureRng>();
BoolEvaluator::with_local_mut(|e| {
let server_key_share = e.multi_party_server_key_share(seed, pk.key(), ck);
server_key_share
})
}
pub fn aggregate_public_key_shares(
shares: &[CommonReferenceSeededCollectivePublicKeyShare<
Vec<u64>,
[u8; 32],
BoolParameters<u64>,
>],
) -> PublicKey<Vec<Vec<u64>>, DefaultSecureRng, ModularOpsU64<CiphertextModulus<u64>>> {
PublicKey::from(shares)
}
pub fn aggregate_server_key_shares(
shares: &[CommonReferenceSeededMultiPartyServerKeyShare<
Vec<Vec<u64>>,
BoolParameters<u64>,
[u8; 32],
>],
) -> SeededMultiPartyServerKey<Vec<Vec<u64>>, [u8; 32], BoolParameters<u64>> {
BoolEvaluator::with_local(|e| e.aggregate_multi_party_server_key_shares(shares))
}
// SERVER KEY EVAL DOMAIN //
impl SeededServerKey<Vec<Vec<u64>>, BoolParameters<u64>, [u8; 32]> {
pub fn set_server_key(&self) {
set_server_key(ServerKeyEvaluationDomain::<
_,
DefaultSecureRng,
NttBackendU64,
>::from(self));
}
}
impl
SeededMultiPartyServerKey<
Vec<Vec<u64>>,
<DefaultSecureRng as NewWithSeed>::Seed,
BoolParameters<u64>,
>
{
pub fn set_server_key(&self) {
set_server_key(ServerKeyEvaluationDomain::<
Vec<Vec<u64>>,
DefaultSecureRng,
NttBackendU64,
>::from(self))
}
}
impl Global for ServerKeyEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64> {
fn global() -> &'static Self {
BOOL_SERVER_KEY.get().unwrap()
}
}
// MULTIPARTY CRS //
impl Global for MultiPartyCrs<[u8; 32]> {
fn global() -> &'static Self {
MULTI_PARTY_CRS
.get()
.expect("Multi Party Common Reference String not set")
}
}
// BOOL EVALUATOR //
impl WithLocal
for BoolEvaluator<
Vec<Vec<u64>>,
NttBackendU64,
ModularOpsU64<CiphertextModulus<u64>>,
ModularOpsU64<CiphertextModulus<u64>>,
>
{
fn with_local<F, R>(func: F) -> R
where
F: Fn(&Self) -> R,
{
BOOL_EVALUATOR.with_borrow(|s| func(s))
}
fn with_local_mut<F, R>(func: F) -> R
where
F: Fn(&mut Self) -> R,
{
BOOL_EVALUATOR.with_borrow_mut(|s| func(s))
}
fn with_local_mut_mut<F, R>(func: &mut F) -> R
where
F: FnMut(&mut Self) -> R,
{
BOOL_EVALUATOR.with_borrow_mut(|s| func(s))
}
}

+ 2
- 2
src/bool/parameters.rs

@ -1,9 +1,9 @@
use num_traits::{ConstZero, FromPrimitive, PrimInt, ToPrimitive, Zero};
use num_traits::{ConstZero, FromPrimitive, PrimInt};
use crate::{backend::Modulus, decomposer::Decomposer}; use crate::{backend::Modulus, decomposer::Decomposer};
#[derive(Clone, PartialEq)] #[derive(Clone, PartialEq)]
pub struct BoolParameters<El> {
pub(crate) struct BoolParameters<El> {
rlwe_q: CiphertextModulus<El>, rlwe_q: CiphertextModulus<El>,
lwe_q: CiphertextModulus<El>, lwe_q: CiphertextModulus<El>,
br_q: usize, br_q: usize,

+ 1
- 1
src/pbs.rs

@ -214,7 +214,7 @@ fn blind_rotation<
>( >(
trivial_rlwe_test_poly: &mut MT, trivial_rlwe_test_poly: &mut MT,
scratch_matrix: &mut Mmut, scratch_matrix: &mut Mmut,
g: isize,
_g: isize,
w: usize, w: usize,
q: usize, q: usize,
gk_to_si: &[Vec<usize>], gk_to_si: &[Vec<usize>],

+ 6
- 11
src/shortint/mod.rs

@ -1,11 +1,8 @@
use itertools::Itertools; use itertools::Itertools;
use crate::{ use crate::{
bool::evaluator::{
BoolEvaluator, ClientKey, PublicKey, ServerKeyEvaluationDomain, BOOL_SERVER_KEY,
},
utils::{Global, WithLocal},
Decryptor, Encryptor, Matrix, MultiPartyDecryptor,
bool::keys::{ClientKey, PublicKey},
Decryptor, Encryptor, MultiPartyDecryptor,
}; };
mod ops; mod ops;
@ -100,7 +97,7 @@ mod frontend {
eight_bit_mul, eight_bit_mul,
}; };
use crate::{ use crate::{
bool::evaluator::{BoolEvaluator, ServerKeyEvaluationDomain},
bool::{evaluator::BoolEvaluator, keys::ServerKeyEvaluationDomain},
utils::{Global, WithLocal}, utils::{Global, WithLocal},
}; };
@ -307,12 +304,10 @@ mod tests {
use crate::{ use crate::{
bool::{ bool::{
evaluator::{
aggregate_public_key_shares, aggregate_server_key_shares, gen_client_key, gen_keys,
gen_mp_keys_phase1, gen_mp_keys_phase2, set_mp_seed, set_parameter_set,
BoolEvaluator, ClientKey,
},
aggregate_public_key_shares, aggregate_server_key_shares, gen_client_key, gen_keys,
gen_mp_keys_phase1, gen_mp_keys_phase2,
parameters::{MP_BOOL_PARAMS, SP_BOOL_PARAMS}, parameters::{MP_BOOL_PARAMS, SP_BOOL_PARAMS},
set_mp_seed, set_parameter_set,
}, },
shortint::types::FheUint8, shortint::types::FheUint8,
Decryptor, Encryptor, MultiPartyDecryptor, Decryptor, Encryptor, MultiPartyDecryptor,

+ 2
- 14
src/shortint/ops.rs

@ -1,18 +1,6 @@
use std::mem::MaybeUninit;
use itertools::{izip, Itertools}; use itertools::{izip, Itertools};
use num_traits::PrimInt;
use crate::{
backend::ModularOpsU64,
bool::{
evaluator::{BoolEvaluator, BooleanGates, ClientKey, ServerKeyEvaluationDomain},
parameters::CiphertextModulus,
},
ntt::NttBackendU64,
random::DefaultSecureRng,
Decryptor,
};
use crate::bool::evaluator::BooleanGates;
pub(super) fn half_adder<E: BooleanGates>( pub(super) fn half_adder<E: BooleanGates>(
evaluator: &mut E, evaluator: &mut E,

Loading…
Cancel
Save